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SUMMARY

This report describes the research work performed for the Colorado Department of
Highways during the period from June 1991 to March 1993, under the research contract
entitled Analytical Simulation of Rockfall Prevention Fence Structures, CSM Contract
No. 3422.

The work performed during this contract included the following tasks:(i) the development
of a novel numerical model for the dynamic simulation of a rockfall prevention fence using
the discrete element method (DEM), (i) the numerical implementation of the DEM
numerical model in a computer code to be used by engineers at the Colorado Department
of Highways, and (iii) demonstration and validation of the DEM computer technique to
simulate rockfall impacts against rockfall fences.

The original DEM numerical model was designed to analyze flexible rockfall prevention
fences that were comprised of a single layer of columnar attenautors. In an additional
research task funded under this contract the DEM model was extended to deal with fences
with two layers of attenuators. The details of this additional research work are contained
in Appendix I.

The dynamics simulation sofiware was developed on an Intel based CPU 80486
microcomputer. This hardware environment was also used to perform the dynamic
analyses which are described herein.

1.0 INTRODUCTION

The purpose of a rockfall prevention fence is to decrease the kinetic energy of a falling
rock or rocks down a mountain valley. Such fences are installed near mountain highways
to minimize the risk of automobile accidents caused by rockfall events. The fence type
being investigated consists of hanging columnar attenuator masses assembled of used
truck tires and rims, threaded onto a steel rod, which are suspended from a horizontal
overhead wire cable and connected by a bottom cable (see Fig. 1). When a rock hits the
fence the hanging columns begin to move in a pendulum-like motion. This mechanism
transfers a significant amount of the rock's kinetic energy during the impact phase. Since
the fence structure is flexible and not rigid, the damage to the fence during most rock
impacts is only slight. In many cases the decrease in rock velocity after its impact with the
fence is sufficient so that the rock will harmlessly come to rest shortly after impacting the
fence, and not enter the highway. In extreme cases where very large rocks (over 2000 Ibs)
moving with high velocity hit the fence, the fence capacity is exceeded. In this situation the
hanger connection at the top of the steel rod that passes through the center of attenuator is
designed to break. This failure results in the loss of an attenuator column but not the



complete breakdown of the fence structure. This design feature allows the fence to be
repaired easily, with the simple reattachment of a new attenuator column [2].

The numerical model reported herein, provides a technique that can be used in
conjunction with experimental methods to estimate the fence capacity. The present study
determines the effects of varying fence design and rock impact parameters on the
magnitudes of the relevant dynamics response parameters. For example, the dynamic
impact calculations study the effects of different rock sizes and rock velocities on
particular fence configurations. Fence response parameters of particular importance
include; (i) the forces in the hanger connection and the overhead and bottom cables, and
(ii) the decrease in rock velocity due to impact.

The numerical procedure developed to perform this dynamic impact simulation is based
upon the DEM. This procedure solves the nonlinear coupled dynamic equations of motion
for the idealized fence structure and the impacting rock. The DEM model assumes that the
fence structure can be idealized as a system of connected rigid bodies, and the rock as an
impacting rigid body. The dynamic fence-rock impact conditions are modeled with a
penalty formulation and an automatic contact detection algorithm. This numerical
procedure utilizes an explicit time stepping scheme to solve the discretized equations of
motion.

1.1 The Prototype Fence Structure and Impacting Rocks

A typical fence structure, similar to those presently being investigated, is shown in Fig. 2.
Cylindrical column attenuator masses are connected to a steel wire overhead cable through
hanger attachment cables. These column masses consist of layers of used truck tires on
their rims that are threaded onto a vertical steel rod. The introduction of the bottom cable
connection ensures that the combined mass of all attenuators is active during an impact. It
should be noted that any slack in the bottom cable results in a delayed displacement action
between attenuators. The area of the bottom cable is approximately one quarter of the
area of the main overhead cable with the same modulus of elasticity as the overhead cable.
The bases of the attenuator columns are close to the ground to capture low falling rocks.
In some cases the attenuator columns are of different lengths to adapt to the uneven
profile of the terrain,

The sizes of the most likely impacting rocks range between 500 Ibs to 1500 Ibs.
Corresponding impact rock velocities vary between 50 and 70 ft/s. It should be noted that
larger impacting rocks that are over 2000 Ibs in weight are likely to cause significant fence
damage, and exceed the fence capacity.

1.2 The Discrete Element Method

Discrete element methods are a family of related numerical techniques specifically
designed to solve problems in applied mechanics, which exhibit gross discontinuous,
material and geometrical, behavior. For example, many DEM's are used to analyze systems



of interacting rigid or deformable bodies undergoing large dynamic or pseudo static
motion, govemned by complex constitutive behavior. It should be noted that the solutions
to problems of this type are often intractable by conventional continuum based methods
such as finite element, finite difference and boundary element procedures.

A typical discrete element algorithm includes the following features:

(1) an automatic contact detection scheme which can recognize new contacts as the
simulation progresses, and update the contact fopology appropriately,

(ii) a contact force model to determine the forces acting between interacting bodies, and
(1) a time integration scheme to solve the governing equations of motion, which allows
for finite displacement and rotation of the discrete bodies within the system.

Applications of DEM's include; the mechanical modeling of granular media, failure
analysis of brittle materials (ceramics, rocks, ice, etc.), mechanical behavior of fractured
and jointed rock masses, and discrete simulation of compaction in material processing of
ceramics and powder technologies [3,6]. More recently, discrete elements have also been
applied to continuum structural mechanics problems, which include large displacement
dynamic analysis of elasto-plastic beams [4], and deep-ocean mining pipes [5].

2.0 THE FENCE MODEL

The modeling aspects and assumptions of the discrete element model, namely the rigid
body dynamics of the fence and rock, the cable behavior, the rock/attenuator impact
interaction model and the numerical integration of the dynamic equations of motion are
discussed below.

2.1 Rigid Body Dynamics of Attenuator Columns and Rock

The attenuators and the impacting rock are both represented by three-dimensional rigid
bodies. The local elastic or plastic deformation that occurs in the vicinity of the point of
contact during the impact is accounted for within the contact force law. Details of the
contact model are given in a subsequent section of this paper. The fence attenuator
columns are modeled as circular cylinders, and the impacting rock as a sphere. The
kinematics of the fence attenuator columns and the rock is assumed to be planar. The
dynamic motion of the fence attenuators and rock are therefore, confined to the x, y plane
(see Fig. 2b).

2.2 Rigid Body Boundary Geometry
A superquadric geometrical formulation is used to describe the two- dimensional surface

geometry of the outline of attenuators and the rock. This geometrical surface model can
be used to describe any shape, from an ellipse to a rectangle. The boundary shape of the



two-dimensional body is defined by a number of boundary nodal points on the super
ellipse:

(x/a)" + (y/b)" =1 ¢)

Notes: (1) x, y are principal local centroidal coordinates for the super ellipse, and (ii) the
parameters a, b and n define the bounding dimensions and shape of the super ellipse.

The current positions of these boundary nodes are then utilized to check for geometrical
contact or overlap with neighboring bodies. This check is performed with a simple
algebraic calculation of an inside-outside function. It should be noted that the superquadric
representation provides analytical formulae for the convenient computation of the outward
normal and curvature at any point on the boundary of the body. For further details, the
reader is referred to [1].

2.3 Impact Geometry Conditions

It is assumed that the rock hits the central portion of the fence (Fig. 1). This assumption
allows the use of symmetry. Furthermore, since the average dimension of the rock is
approximately equal to the diameter of an attenuator, if the fence contains an odd number
of attenuators, the rock impacts the central attenuator only, otherwise, the rock impacts
the two central attenuators symmetrically and the impact loads are equally distributed
between the two central attenuators. In this situation the two central attenuators are
assumed to move together.

2.4Cable Connections

The sections of cable connecting adjacent attenuators are idealized as massless cable
elements with linear elastic or perfect elastic-plastic material behavior. The pre-impact
position of the overhead cable is defined as the static equilibrium shape due to the self
weight of the attenuator columns. This position is simply computed by a direct application
of the static equilibrium equations for the fence. These cable elements transmit tension
only and may become slack if appropriate kinematic conditions occur. Note, that since the
attenuators are constrained to move only in the x, y (Fig. 2b) plane, the z-coordinates of
the ends of the cable elements do not change.

2.5 Dynamic Contact Forces

The dynamic contact forces generated during the impact are determined with a penalty
formulation. The penalty method employs a contact "element" at the point of impact
between the two bodies that is defined by a combined concentrated stiffness and damping
element. This contact "element" produces forces that depend upon the current penetration
or overlap distance and relative impact velocity between the impacting rock and the
attenuator at the point of impact. These forces are applied in an equal and opposite



manner to the rock and the attenuator. Further details of the penalty approach are given in
a subsequent section of this report.

Note, that only the central attenuator(s) is impacted. The other attenuators act as slaves
that move only because of forces transmitted through cables connecting adjacent
attenuators. Furthermore, note that contact forces between adjacent attenuator columns
are neglected, since they are small compared with the impact force between the central
attenuator and the impacting rock.

3.0 COMPUTATIONAL DETAILS OF FENCE MODEL

3.1 Attenuator Equations of Motion

The equations of motion for the ith fence attenuator, assuming that the dynamic motion is
planar and confined in the x-y plane are given by:

m; ¥; = ZF; )
m, §; = ZF, ®)
L6, =Z M, @)

fori=1,2,..N, where N, is the total number of fence attenuators, and N is defined as N
= (N, + 1)/2. See Fig. 3 for details of the attenuator identification numbering scheme. The
corresponding resultant loading terms in equations (2),(3) and (4), are:

F, =T, +B, +P, o)

ZFyi=T‘yi+§yi+Pyi—mig ©)

IM; = B,bcosd, + B, bsin6, + T;acos6; + T;asinb,
+P; Ay, + P, Ax; ™

where T, and Tyi are the global x- and y- components of tension forces induced at the top
overhead cable connection, B, and ﬁyi are the global x- and y- components of tension

forces induced at the bottom cable connection, P, and P, are the global x- and y-
components of the contact forces generated by the rock attenuator impact, and g is the



gravitational constant. For the itht attenuator the following parameters are defined: m, is
the mass, I, is the mass polar moment of inertia with respect to the centroid, g is the
gravitational constant, X, and y, are the global centroidal coordinates, and [ is an angular
coordinate defining the axial direction of the attenuator (see Fig. 4). The distances of the

top and bottom cable connections with respect to the attenuator centroid are defined by a
and b, respectively. The global x- and y- coordinates of the point of contact of the rock

with the attenuator measured with respect to the attenuator centroid are defined by Ax;
and Ay,. Note, that if N is even, the mass and moment of inertia terms in equations (2)

through (4), for i=1, are doubled. This modification is required because of the assumed
symmetrical impact geometry.
3.2 Rock Equations of Motion

The corresponding equations of motion for the rock are:

m X =P, ®
mryr = Pyi —mrg (9)
1.6, =P, Ax, — P Ay, (10)

where m,_ is the mass of the rock, I is the rock mass moment of inertia with respect to its

centroid, and Ax, ,Ay, are the global x- and y- coordinates of the point of contact of the
rock with the attenuator, with respect to the centroid of the rock.

3.3 Top Cable Attachment Forces

In Fig. 5, the top overhead cable segment with end points T, andT,,, between attenuators
i and i+1 is shown. In a coordinate system with the origin at point T;, the coordinates of

pointT,,, are denoted by (x,,,, V,,,, d,), where d, is the horizontal distance between
attenuators i and i+1, which is constant because of the assumption of planar kinematics. At

time t = O, the initial position of the pointT,, with respect to point T; is given by:

(0, Yi» —diny) = (0, y;, 0) + (0, H, —d;,;) (11)



where H=h,,, —h,. Note that the initial vertical positions,h,, which define the pre-
impact configuration are calculated from static equilibrium as discussed previously. The
initial unstretched length of the cable segment at time t = 0 is computed from:

L= (d,Z +H2)m - T,/ k; (12)

where k; is the axial stiffness of the cable segment, and T is the initial tension of the
cable segment in the initial equilibrium condition. The current length of the cable segment
at time t is given by:

¢, =(x; +y; +d)" (13)

The tension in the cable segment at time t is computed from:

T = (14)

1

k(£ —4,) for ¢, 2¢,
0 for ¢, <¢,

Note, that the above equation models cable slack correctly and non-physical compressive

forces cannot be transmitted. The corresponding global x- any y- components of the cable
tension are given respectively by:

T.=Tx /¢ ad T,=Ty/¢ (15)

The resultants global x- and y- components of forces acting on the ith attenuator due to
the tension at the top cable connection induced in the cable segments between the (i-l)th,
ith and (i + 1)'£h attenuators is determined from:

T, =T, -T,, and T, =T, =T, (16)
It should be noted that for the first attenuator (i=1),T,, =T, =0, and because of

symmetry the resultant forces T and T are doubled.

3.4 Bottom Cable Attachment Forces

The previous analysis for the computation of the top overhead cable forces is applicable to
the bottom cable forces with the following minor modifications:

(1) the axial cable stiffness for the bottom cables should be changed accordingly, and

10



(i) the initial tension in the bottom cables is zero, and there is a significant amount of slack
cable length which must be taken up before any tensile forces are transmitted to the
attenuators.

Condition (i) requires that the axial stiffness of the bottom cable is doubled because of the
double cable wrapping in the fence design (see Fig. 2a).

Condition (ii) is accounted for by modifying the corresponding form of the equation (12)

for the unstretched cable length by setting T, = 0 and by increasing the unstretched length
by a user-defined slack cable length.

3.5 Contact Forces

An accurate representation of the dynamic impact forces, stresses and strains generated
during the fence-rock impact event would require a detailed non-linear dynamic impact
analysis. This could be performed with a finite element calculation in which the rock and
the attenuators would be idealized as deformable bodies. However, since only the energy
transfer mechanism between the rock and the fence is of primary interest, a simple
dynamic contact model can be used. The normal contact element model is comprised of a
linear spring stiffness and viscous damper, connected in parallel, that acts in the contact
normal direction at the instantaneous point of contact, as shown in Fig. 6a. Behavior in the
contact shear direction is defined by a shear contact element model consisting of a linear
spring stiffness and a slider that simulates a simple Coulomb dynamic friction model (see
Fig. 6b). Note, that the contact normal and shear directions are defined by the boundary
geometry of the body with the smoothest tangent plane at the point of contact. The normal
and shear contact element model are active only when the discretized boundaries of the
rock and the attenuator penetrate each other.

The normal instantaneous contact force, F,, is defined by:

F = (17)

n

k, 8, +cd, for 3,20
0 for 5, <0

where, k_  is the normal contact stiffness, ¢ is the normal contact viscous damping
coefficient, and 8, is the normal penetration distance at the point of contact.

The shear instantaneous contact force, E,, is given by:

k.8, for k|5|<p|F,| and§, >0
F ={pF, for k,|8|2p|F,| and$,>0 (18)
0 for 9,<0

11



where, k, is the shear contact stiffness, 8, is the shear slip distance at the point of contact
and M is the dynamic coefficient of friction between the rock and the attenuator.

Note: A suitable value of the normal contact stiffness k,  is specified by the user by
limiting the maximum penetration, or overlap, between the surfaces of the impacting two
bodies to a predefined value. Typically, this maximum penetration is defined as a small
fraction of the average body dimension of the contacting bodies. For example, this fraction
is usually between 0.01 and 0.05. An estimate of k_ can simply be determined with an
approximate energy calculation for the impacting bodies.

For fence-rock impact studies the normal contact stiffness k, should be determined by

prescribing an approximate maximum overlap between the rock and attenuator elements.
A facility for this has been included in the DEM computer model and is mentioned in
Appendix IT of this report. In the analyses performed in Appendix I for double layer fences
an overlap of six inches was prescribed.

3.6 Restitution Model

In the discrete element numerical model, the energy loss due to impact is simulated with a
viscous damper which acts at the point of impact, P, in the contact normal direction. The

normal viscous force, F , in this damper, which is the second term in the normal contact
force equation (17), is given by:

F =c¢cbd (19)

[ n

where Sn is the normal component of the relative velocity of the fence with respect to the
rock at the point of contact, and is defined by:

Sn = (Vpr"' VPI'). o (20)

Note, that 0 is the unit outward contact normal direction at the point of impact, P, and v,

and v, are the velocities of the fence and the rock during the impact, respectively, and ¢ is
the normal contact viscous damping coefficient as defined in equation (17).

In a dynamic impact between two bodies, the energy loss can be approximately modeled
with a simple restitution model which requires e, the coefficient of restitution, to be known
a priori via experimental data. Due to lack of available quantitative data concerning the
impact energy losses during a fence-rock impact situation this simple model is appropriate.
However, in order to apply the normal contact force law, equation (17), a relationship

12



between the viscous damping coefficient ¢, and the coefficient of restitution e, is required.
For this purpose, a simple approximate relationship between the viscous damping
coefficient, c, and the coefficient of restitution, e, can be derived by assuming that the rock
and the attenuator are approximated as two particles of mass m_and m,, respectively.
This results in the relationship:

c=2mn(1/e)[k,m,m /(m, +m,)]"*/ [x* +(In(1/¢))*]" 1)

where k_ is the normal contact stiffness at P, the point of impact.

It should be noted that the use of equation (21) is only approximate when applied to a
non-central impact between a spherical rock and a cylindrical attenuator. Some numerical
experimentation, therefore, is usually required to obtain the precise value of the viscous
damping coefficient which corresponds to a specified value of the coefficient of restitution.

3.7 Time Stepping Algorithm

The above equations of motion, (2), (3) and (4), which describe; (i) the translational rigid
body motion of the center of mass for each attenuator element, and, (ii) the rotational
motion of each element, can be written in the generalized form:

Mg =F, k=123 (22)

where q; is a generalized coordinate, MY is a generalized mass, and E* is a generalized
loading vector.

For a planar rigid body element, the generalized variables are identified as follows:

(i) the generalized coordinates, q;, q°, are the element centroid Cartesian coordinates x,,
y;, and @’ is the angular coordinate 6,, of the elements longitudinal or local x-axis,

(ii) the generalized masses, M;, M are the element mass m,,
and M; is the elements polar mass moment of inertia 1., and

(i) the generalized loading vector, F', F?, are the x,y- components of applied forces
acting at the element centroid and

F’ is the applied moment acting at the element centroid.
The solution of the above decoupled dynamic element equations for large rigid body

motions is obtained with an updated Lagrangian algorithm. This procedure employs
incremental updating of the element centroid kinematic variables. Time integration of the

13



dynamic element equations is then performed with an explicit central difference time
stepping scheme.

The_central difference time step update scheme for the generic dynamic equilibrium
equation (22), from time t* to t” + At, is performed in two parts:

(i) a generalized velocity update for the linear and angular velocity of the center of mass of
all the elements, where the generalized velocities, (', for a typical element are updated by:

n+1/2q§: = n—llz(ili; +Atn Flk/M:: (23)
where the pre-superscripts n-1/2, n, and n+1/2 indicate quantities defined at times

t" —At/2, t°, and t" + At/ 2, respectively, and

(i) a generalized position update for the coordinates of the center of mass and the local
longitudinal axis of all the elements, where the generalized coordinate for a typical

element, g7, is updated by:
n+1q§< = an + n+1/2q:cAt (24)

The pre-superscripts n and n+1 indicate quantities defined at times t* and t* + At.

The numerical stability criteria of this time stepping scheme depends on the maximum
frequency of the combined discrete element system, w__ . This gives a time step limitation
constraint of the form:

At <2/o, (25)

where At is the maximum allowable time step. This criteria can be applied simply with
the largest natural frequency of any rigid attenuator element within the fence structure
which is an approximate upper bound of ®w_, . This approximate procedure avoids a
costly eigenvalue analysis of the whole discrete element fence idealization.

4.0 DESCRIPTION OF THE DEM SOFTWARE MODULES

The DEM dynamic fence-rock analysis software consists of three major modules:
(1) the computational DEM module (FENCE),

(i)the geometrical graphics snapshot and animation module (GPLOT), and
(iii)the time history graphics module (HPLOT).

14



In the DEM computational module, FENCE, the input data contains the following
parameters:

(i) fence and rock geometry and mass properties,

(i1) material model and properties for the fence cables,

(iii) impact and restitution parameters between the fence and the rock,

(iv) the initial rock velocity prior to impact, and

(v) control parameters which describe the type and time intervals of the computed results.

This input data is contained in a data file with a user-specified name appended with the
extension .DAT.

The computed results are written to three different output data files with a user-specified
name appended with the extensions .OUT, .HST, and .GEO, respectively. These output
data files are called the printout file, the time history file, and the geometry file,
respectively.

The printout file is used directly to verify the input data and for checking purposes by the
user. The time history and the geometry results data files are input data for the graphical
post-processing modules HPLOT and GPLOT, respectively.

The HPLOT graphics module interactively displays time history plots and produces
postscript graphics output. Typical time history data plots include; (i) centroidal
kinematics quantities such as position and velocity components for the rock and the
attenuator columns, and (ii) forces in the overhead and bottom cable segments, and the
attenuator hanger connections.

The GPLOT graphics module is used to display the following geometrical data for the
fence-rock system; (1) single snapshots of the fence-rock geometry at prescribed times
during the impact, or (ii) animation of the fence-rock motion throughout the impact.
Postscript graphics output of the single geometry snapshots can also be produced by
GPLOT.

The hard copy graphics output from HPLOT and GPLOT have been used to illustrate the
computational results obtained from the numerical analyses presented in the subsequent
sections in this paper. It is the opinion of the authors that without graphical output these
analyses would be very difficult to perform and interpret effectively.

5.0 VALIDATION PROBLEMS
The following example problems are presented to validate the above described discrete

element computational procedure. These calculations illustrate that this numerical
approach accurately models; (i) dynamic impact phenomena between rigid bodies, (ii)

15



large dynamic rigid body motion and translation, and (iii) large elastic deformations of the
flexible cables attached to the bodies.

The first example problem consists of a particle of mass m, initially at rest, attached to two
unstretched elastic cables of stiffness, k, and length, ¢, in a horizontal plane (note that the
gravitational effects are ignored), being impacted by a particle of mass M with an initial
velocity vq (see Fig. 7). The coefficient of restitution for this impact is defined by e.

The data used for this analysis are as follows:
k=4N/m,{ =10m,m=1kg, M=2kg, e=0.5and vy =2m/s.

The analytical solution for this problem is described by:

v, =M(1+e)v, /(M+m) (26)
Where v, is the velocity of the particle of mass m, immediately after the impact, and

v2(0)=v? -2k £*(1-cos8)’ /(m cos?0) 27

where v(0) is the velocity of the particle of mass m after the impact at the instant when
the cables subtend an angle 6 with respect to their initial directions.

The time histories of the x-component of velocity for the particles of masses m and M are
shown in Fig. 8. The distance moved by the particle of mass m, after its velocity decreases
to zero is computed as 3.826 m and corresponds to an angle © = 0.365 radians. This is in
good agreement with the exact result which can be obtained from equation (27). It should
also be noted that the velocity immediately after impact is 1.997 m/s, which compares
closely with the analytical value of 2.0 m/s, predicted by equation (26). This result
validates the viscous damper - restitution coefficient equation stated in equation (21),
previously.

The second validation problem consists of a single cylindrical attenuator being impacted
by a spherical rock moving with an initial horizontal velocity vo. The cylindrical
attenuator is pin-jointed at its top, and the line of impact is through the center of mass of
the attenuator, (see Fig. 9). The superquadric geometrical representation of two-
dimensional outline shapes of the spherical rock and the cylindrical attenuators in the
subsequent analyses are defined as follows:

(1) the rock geometry is defined by a circular boundary shape with twelve equally spaced
nodes, and

(ii) the fence attenuator geometry is defined by a boundary shape with four nodes at the
comners of the rectangular boundary.
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The attenuators mass, moment of inertia with respect to the center of mass, vertical height
and radius are defined by m, I, ¢ and r, respectively. The mass of the rock is M, and the
coefficient of restitution is e. The data for this analysis are given as:

m = 14.92 slugs, £ = 8 ft, [ =85.42 slug-fi2, r=12 f,
M =37.23 slugs, v, =5 ft/s and ¢=0.5.

The analytical solution for this problem is given by:

v,=M(1+¢)(£/4)/[1, +(M+m)? / 4] (28)

where v7 is the speed of the center of mass of the attenuator immediately after the impact.
Note: the corresponding angular velocity is determined by:

w,=2v,/¢ (29)

The subsequent angular velocity of the center of mass of the attenuator, ®(0), when the
angle of the longitudinal axis of the attenuator with respect to the vertical direction is 6, is
defined by:

©*(8) = w? +2mgl(cos®-1)/(I, +m¢*/ 4) (30)

The numerical results of the dynamic impact simulation are given in Figs. 10 and 11. Fig.
10 shows snapshots of the geometry of the rock and the attenuator during the dynamic
impact simulation. A time history of the horizontal component of velocity of the rock and
the attenuator during and after the impact is shown in Fig. 11. The computed horizontal
components of the rock and the attenuator immediately after the impact are 2.36 ft/s and
485 fi/s respectively, which are in close agreement with the exact solution. The maximum
angle of rotation of the attenuator after the impact was computed to be 0.503 radians
which agrees with the analytical value to three significant figures. This analytical result can
be computed from equation (30).

6.0 ROCK IMPACT STUDIES

6.1 Model Dimensions and Properties

A full size fence model is used to study the dynamic response of the fence due to
impacting rocks. A similar full size prototype fence has been built by the Colorado
Department of Highways (CDOH). Limited experimental data, which is mainly qualitative,
has been obtained from this fence structure by the CDOH. Dimensions and material
properties for this numerical idealization are described in Fig. 2 and Table 1. In the present
computer model two idealized material models for the cable behavior have been
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implemented. The first is a simple linear elastic model, and the second is a perfect elastic-
plastic model. These models were selected, since more precise cable data for the
prototype fence was not available. It should be noted that more realistic material models
for the cable can be readily inserted into the present algorithm. For example, a
constititutive model with time dependent stiffness properties which accounts for cable life
[7], could be implemented.

6.2 Simulation Results

A series of analyses were performed which included the following possible combinations:
(i) two rock sizes, (ii) the two material models, (iii) different rock impact heights, (iv)
different bottom cable slack conditions, and (v) no bottom cable. Each computer run
required approximately 100,000 time steps with At = 2 x 10-0 seconds. Each analysis
required about 15 minutes, using an Intel CPU based 80486, 33 MHz microcomputer.

Tables 2 and 3 summarize the computed results for the 600 1b. rock, and the 1200 Ib.
rock, respectively. The calculations include the maximum forces in the fence cable
segments and the attenuator hanger connections, and the final rock velocities after the
impact. The results quoted are for analyses performed with; (i) the linear elastic cable
model, and (ii) the perfect elastic-plastic cable model. Note, that the results for the perfect
elastic-plastic model are quoted in parenthesis in Tables 2 and 3. A bottom cable slack of
0.5 ft. is assumed. The first column in Table 2 indicates the vertical variation of the rock
impact position with respect to the attenuator centroid.

Figures 12 through 15 show detailed geometry snapshots and time history plots for an
impact situation, when the rock impact location coincides with the centroid of the
attenuator. Figs. 12 and 13 show snapshots of the fence-rock geometry during the impact
for the 600 Ib rock, with a bottom cable (0.5 ft slack), and without bottom cable,
respectively. Figures 14 and 15 illustrate time histories for the primary design parameters,
namely, attachment force, forces in top and bottom cable, and the rock horizontal velocity.
These results were computed for both rock sizes and cable material models. The
computed results presented in Tables 2 and 3, and the time history data in Figs. 14 and 15
are discussed below.

A series of further analyses were performed for 600 Ib and 1200 Ib rock impacts against a
single layer fence structure. In these simulations the bottom fence cable was analyzed
under the two following conditions: (i) 0.0 fi. slack, and (ii) 0.25 ft. slack The maximum
forces in the top overhead cable and top joint at the central attenuator are quoted in
Tables 4 and 5. From the results of the analyses it was concluded that different slack
bottom cable lengths cause only minor differences in the overall impact behavior and
mechanical response of the fence. For example in the simulations with slack cables short
duration force spikes in the fence impact force time histories were noted.

6.3 Observations
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From the computational results of the analyses which are summarized in Table 2 and 3, the
following general observations can be made: (i) for a fence with a bottom cable: elastic
cable forces tend to reach a maximum when the impact takes place near, and above, the
attenuator centroid, and (ii) for a fence without a bottom cable the elastic cable forces
tend to increase with impact height. In both fences, with or without bottom cables it is
observed that the rock post-impact velocity decreases with increasing impact height.

The time histories presented in Figs. 14 and 15 give more detailed insight to cable
behavior and rock velocity characteristics for a particular impact. Relevant observations
are summarized as follows:

(1) There exists a significant difference in the fence cable forces computed, assuming
elastic and perfect elastic-plastic cable behavior, respectively. It is noted that the
elastic-plastic material model predicts minor yielding which "cushions the impact”,
and reduces the unrealistically high impact peak forces in the cables obtained by the
elastic cable model (see Figs. 14b, and 14f).

(i) The slack in the bottom cable produces force spikes introducing further impacts to the
attenuators. Slack in the bottom cable causes a delayed sequence of impulsive cable
forces which act between adjacent attenuators This phenomenon leads to force
spikes in the cable forces (see Figs. 14¢, and 14g).

(1i1) The fence with a bottom cable produces multiple impacts between the attenuator and
the rock, thus, reducing the rock velocity gradually in stages.

(iv) Minor plastification takes place in the top overhead cable mostly during the first
impact between the rock and the attenuator (see Figs. 14i and 15i).

7.0 CONCLUDING REMARKS

A powerful numerical modeling tool has been developed for the non-linear dynamic
impact modeling of a flexible rockfall prevention fence. An approximate three-dimensional
impact analysis has been performed in an effective manner with a new two-dimensional
DEM model. In this model the fence and rock kinematics are assumed to be planar,
whereas the cable stiffness effects are modeled in a three-dimensional manner. Nonlinear
cable effects have also been included.

The DEM simulation procedure has been mathematically validated and applied to a series
of full scale fence-rock impacts with varying design parameters. The numerical results for
this series of impact simulations predict the maximum forces generated within the fence
cables during a rock impact event. Corresponding predictions of post impact rock
velocities have also been made. These initial calculations presented here illustrate the ease
with which a designer can evaluate the effects of varying different fence design parameters
on the fence capacity. It is hoped that further use of this numerical model, in conjunction
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with additional experimental data, will enable the design engineer to improve upon the
current methodology employed in the design of flexible rockfall prevention fences.
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Top Cable Span: L = 55 ft
Top Cable Sag: f = 5.5 ft
Modulus of Elasticity: E = 20,000 ksi
Top Cable Area: App = 1.076 in?
Bottom Cable Area: A, = 0.25 in2 (doubly wrapped)
Tire Height: t =8 in
Attenuator Height: 12t = 8 ft
Attenuator width: w= 2.5 ft
Attenuator Unit Weight: Varr = 12.2 lbs/ft3
Attachment l.ength: d = 2.5 ft
Rock Unit Weight: Yrock = 165 lbs/ft3
Rock Weight: 600 1bs (case (i))
1200 lbs (case (ii))
Rock Impact Velocity: vy = 65 ft/s (horizontal)

Coefficient of Restitution: e = 0.4

Table 1. Model Dimensions and Properties
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FORCE IN
FORCE IN TOP CABLE FORCE IN V¢ -ROCK
Yc TOP JOINT WITH BOTTOM BOTTOM CABLE AFTER IMPACT
104 [tbs] CABLE NO SLACK 105 [ibs] [ft/sec]
105 [1bs]
WITH BOTTOM
CABLE,SLACK =0.50 FT.
3.0 3.87 1.62 1.41 46
(3.95) (1.64) (1.00) -57
-1.5 9.02 262 1.55 -5.6
(5.59) (2.00) (1.00) (-2.6)
0.0 8.78 279 1.55 -16
(5.83) (2.00) (1.00) (-6.9)
15 6.99 2.39 1.51 -1.1
(5.89) (2.00) (1.00) (-2.5)
3.0 6.64 231 0.89 15.5
: (5.78). (2.00) 0.94) (8.2
NO BOTTOM
CABLE
-3.0 2.76 1.29 437
-1.5 1.02 0.67 -31.7
0.0 2.16 1.10 -23.7
1.5 7.03 2.40 -20.8
(5.91) (2.00) (-21.9)
3.0 6.77 2.34 -1.7
(5.83) (2.00) (-1.5)

Table 2. Maximum Forces for a 600 Ib Rock Impacting a Fence with: (a) with Bottom

Cable 0.5 ft. Slack, and (b) without a Bottom Cable
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FORCE IN
FORCE IN TOP CABLE FORCE IN V, -ROCK
Yec TOP JOINT WITH BOTTOM BOTTOM CABLE AFTER IMPACT
104 [1bs] CABLE NO SLACK 105 [Ibs] [ft/sec]
103 [Ibs]
WITH BOTTOM
CABLESLACK = 0.50 FT.
3.0 7.46 2.5 1.8 -12.9
(5.95) (2.00) (1,00) (2L.1)
1.5 10.6 3.16 1.78 -11.2
(6.19) (2.00) (1.00) (-14.2)
0.0 13.4 3.7 1.94 9.7
(6.26) (2.00) (1.00) (-10.8)
15 9.77 2.99 218 0.5
(6.92) (2.00) (1.00) (-7.2)
30 8.18 2.68 1.47 4.8
(6.85) (2.00) (1.00) (1.3)
NO BOTTOM -
CABLE
3.0 3.17 142 -51.7
.15 1.38 0.82 47.0
0.0 3.15 1.41 386
15 921 2.89 -35.1
(6.4) (2.00) (-34.1)
30 9.18 2.87 -16.1
(6.28) (2.00) (-17.8)

Table 3. Maximum Forces for a 1200 Ib Rock Impacting a Fence with: (2) with Bottom

Cable 0.5 ft. Slack, and (b) without a Bottom Cable
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FORCE IN
FORCE IN TOP CABLE FORCE IN Vg - ROCK
Ye TOP JOINT WITH BOTTOM BOTTOM CABLE | AFTER IMPACT
104 [Ibs] CABLE NO SLACK 105 [1bs] [ft/sec]
1S [ibs]
-3.0 4.15 1.69 1.29 -5.1
(3.61) (1.54) (1.00) (-5.0)
-1.5 7.97 2.61 1.77 -3.1
(5.08) (1.94) (1.00) -1.9)
0.0 3.87 1.62 2.09 0.7
(2.69) (1.27) (1.00) (-2.3)
15 7.55 2.52 1.64 2.5
(5.89) (2.00) (1.00) (1.71)
3.0 6.54 2.29 1.09 7.1
(5.75) (2.00) (1.00) (6.4)
WITH BOTTOM
CABLE SLACK =0.25 FT.
-3.0 5.75 2.10 1.46 6.4
(4.94) (1.90) (1.00) (-4.2)
-1.5 7.32 2.47 1.39 0.6
(5.77) (2.00) (1.00) (-2.3)
0.0 10.1 3.06 1.92 -12
(5.34) (2.00) (1.00) (-7.2)
L5 6.99 2.39 1.2 -1.6
(5.89) (2.00) (1.00) (-3.7)
3.0 6.64 2.31 0.99 14.9
(5.78) (2.00) (0.89) (5.5)

Table 4. Maximum Forces for a 600 b Rock Impacting a Fence with: (a) with Bottom
Cable 0.0 ft. Slack, and (b) (a) with Bottom Cable 0.25 ft. Slack.
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FORCE IN
FORCE IN TOP CABLE FORCE IN V. - ROCK
Yc TOP JOINT WITH BOTTOM BOTTOM CABLE AFTER IMPACT
104 [Ibs] CABLE NO SLACK 105 [ft/sec)
105 [IbS]
3.0 6.4 2.26 1.8 6.9
(4.84) (1.87) (1.00) (-8.4)
-15 11.5 3.33 2.3 5.9
(5.82) (2.00) (1.00) (-6.7)
0.0 8.01 2.62 265 2.1
(3.87) (1.68) (1.00) (4.2)
1.5 11.1 3.26 2.03 0.9
(6.68) (2.00) (1.00) (L.6)
3.0 3.02 2.62 1.55 10.0
(6.33) (2.00) (1.00) (6.4)
WITH BOTTOM
CABLE SLACK = 0.25 FT.
3.0 104 3.13 1.93 -14.1
(6.25) (2.00) (1.00) (-17.9)
-1.5 9.46 2.93 1.71 6.6
(6.24) (2.00) (1.00) (-10.6)
0.0 13.0 3.61 2.51 -12.1
(5.69) (2.00) (1.00) -1.7)
1.5 10.2 3.08 1.87 -1.1
(6.68) (2.00) (2.00) (-5.4)
3.0 8.18 2.66 1.76 9.2
(6.52) (2.00) (2.00) 4.7

Table 5. Maximum Forces for a 1200 Ib Rock Impacting a Fence with: (a) with Bottom
Cable 0.0 ft. Slack, and (b) (a) with Bottom Cable 0.25 ft. Slack.
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Fig. 4 Attenuator Geometry
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Fig. 5 Cable Geometry - ith Cable Segment
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Fig. 10 Pivoted Cylinder Impact Problem:
Geometry Plot
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Fig. 12 Impact of 600 LB Rock, with Bottom Cable (Slack = 0.5 FT):
Geometry Plot
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Fig. 13 Impact of 600 LB Rock, without Bottom Cable:
Geometry Plot
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APPENDIX I - Modeling of Single and Double Layered Flexible Rockfall
Prevention Fences

The following technical paper describes the additional work required to modify the
FENCE computer model for the analysis of flexible rockfall prevention fences
constructed with two layers of attenuator columns. This publication also illustrates the
capability of the FENCE model to simulate multiple rocks impacting a fence structure.
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DYNAMIC ANALYSIS OF FLEXIBLE STRUCTURES SUBJECT TO
MULTIPLE ROCK-RUBBLE IMPACTS

by

G.G.W. Mustoe
Division of Engineering
Colorado School of Mines
Golden, CO 80401, USA_

Accepted for the Proceedings of the 2nd International Conference on Discrete Element Methods
at
M.1LT., Boston Massachusetts, March. 1993

Abstract

A discrete element model for simulating the dynamic impact response of a highway rockfall prevention
barrier system is described. This work is an extension of previous work for modeling single layer fence
barriers subject to single rock impacts. The DEM technique employs two-dimensional modeling
techniques to develop an efficient algorithm for a three-dimensional nonlinear dynamic structural system.
The approach developed herein is suitable for modeling multi-layered flexible barrier systems impacted by
single or multiple rocks. The resulting software can be used on microcomputers and is suitable for
sensitivity studies and design calculations.

INTRODUCTION

Rockfall prevention highway barrier systems consisting of flexible fence structures are increasingly being
used to minimize the risk of rockfall related automobile accidents or road closures. These barriers are
placed near highways in mountainous regions wherever there is a significant potential rockfall hazard.

Traditionally, most rockfall prevention highway barrier systems are rigid or semi rigid structures such as
fences or walls. Rigid barrier systems are usually constructed from a combination of wood, metal grids
and low cost geo-materials which are often available onsite. Because these barriers are designed to
completely stop falling rocks they are usually fairly massive structures requiring a large amount of
material and significant construction. Alternative rockfall prevention barrier systems are catchment pits or
trenches which must be excavated or blasted so that they are deep enough to catch the rocks.

More recently, highway engineers have developed various flexible barrier systems which overcome many
of the problems associated with rigid structural barriers or pits. These flexible systems are much smaller
and lightweight in construction, and are designed so that minor damage to the barrier can easily be
repaired. It should be noted that minor damage should not significantly reduce the effectiveness of the
barrier. The basic design concept of these flexible barrier systems is based upon the notion that the
flexible barrier does not have to completely stop the falling rock, but just reduce the kinetic energy of the
falling rock to an acceptable level after impacting the barrier. The kinetic energy of the rock after
impacting the barrier must be such that the rock comes to rest harmlessly in a rolling zone. The concept of
reducing the falling rocks kinetic energy is usually termed the principle of rockfall attenuation.

In a flexible barrier system the rock velocity is slowed down by transferring some of its kinetic energy into
the flexible barrier system in the form of impact energy losses, inelastic deformational energy and an
increase of kinetic energy within the flexible barrier. Typical design considerations for a flexible barrier
system are: (i) the accurate prediction of maximum impact forces within the flexible barrier system, and
(ii) an estimate of the corresponding kinetic energy loss of the falling rocks.
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In order to address these design issues full-scale testing of prototype flexible fences and barrier systems
has been performed by the Colorado Department of Highways (CDOH). This experimental work has been
successful in determining the overall performance of typical flexible barrier systems, estimating the basic
design parameters, and modeling barrier failure mechanisms. The major limitations of the data obtained
from this test program are: (i) it is difficult to scale the experimental data for much larger or smaller
structures, (ii) limited quantitative information of falling rock kinetic energy losses, and (iii) limited
applicability to modifications in the barriers structural design, and (iv) most of the data is qualitative .

Recently, a numerical model based upon a combination of the discrete element methodology and a
conventional dynamic structural model has been developed to simulate the dynamic response of a
particular flexible rockfall prevention barrier system [1]. This barrier type consists of hanging columnar
attenuator masses assembled from used truck tires and rims, threaded onto a steel rod, which are
suspended from a horizontal overhead wire cable and connected by a bottom cable. Fig. 1 (a) illustrates a
typical two fence layer flexible barrier system. The bottom cable connection is installed to increase the
kinetic energy losses of the impacting rocks. This increase occurs because the combined mass of all
attenuators are more tightly linked together. It should be noted that any slack in the bottom cable results
in a staggered motion of the attenuators. When a rock hits the barrier the hanging columns begin to move
in a pendulum-}ike motion. The sizes of the most likely impacting rocks range between 500 Ibs to 1500
Ibs. Corresponding impact rock velocities vary between 50 and 70 fi/s. It should be noted that larger
impacting rocks that are over 2000 Ibs in weight are likely to cause significant fence damage, and exceed
the barrier system capacity.

The numerical model described here is a technique that can be used in conjunction with experimental
methods to estimate the barrier capacity. For example, the dynamic impact calculations can study the
effects of different rock sizes and rock velocities on particular barrier configurations. Barrier response
parameters of particular importance include; (i) the forces in the hanger connection and the overhead and
bottom cables, and (if) the decrease in rock velocity due to impact.

The numerical procedure developed is based upon the DEM. This procedure solves the nonlinear coupled
dynamic equations of motion for the idealized barrier structure and the impacting rock. The DEM model
assumes that the barrier structure can be idealized as a system of connected rigid bodies, and the rock as
an impacting rigid body. The dynamic barrier-rock impact conditions are modeled with a penalty
formulation and an automatic contact detection algorithm. This numerical procedure utilizes an explicit
time stepping scheme to solve the discretized equations of motion, see [1] for further details.

The work presented in this paper is an extension of the analysis technique and associated computer
software developed by Mustoe and Huttlemaier [1]. The new developments reported here include: (i) the
modeling of rockfall events consisting of multiple rock impacts, and (ii) dynamic analysis of flexible
barrier systems consisting of multiple fence structures.

BARRIER DEM MODEL
The rockfall barrier discrete element algorithm includes the following features:

(i) an automatic contact detection scheme which automatically recognizes new contacts as the simulation
progresses, and updates the contact topology appropriately,

(ii) a contact force model that determines the forces acting between interacting fence attenuator columns,
impacting rocks and connecting fence cables, and

(iii) a time integration scheme to solve the governing equations of motion of the fence attenuator columns
and impacting rocks, that allows for finite displacement and rotation.
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The modeling aspects and assumptions of the discrete element model, namely the rigid body dynamics of
the barrier system and rock, the cable behavior, the rock/attenuator impact interaction model and the
numerical integration of the dynamic equations of motion are discussed below:

¢ The impacting rocks and fence attenuator columns are modeled as three-dimensional rigid spherical
and cylindrical bodies respectively, that are confined to move in a planar manner within the x,y plane
(see Fig 1 (b)).

¢ A superquadric representation [2] of the two-dimensional boundaries of the impacting rocks and
fence attenuator columns is employed. This kind of geometrical modeling has been used previously by
Williams and Pentland [3] in DEM analysis.

e  Multiple fence layers within the flexible barrier system interact with each other because of the contact
between adjacent attenuator columns in different fence layers. This phenomena occurs because of the
planar kinematics of the attenuator columns.

¢ Multiple interacting rocks are assumed to hit the central localized portion of the barrier that is limited
to one or two attenuators in the center of the barrier. This assumption is justified since the diameter of
most impacting rocks is less the diameter of the cylindrical attenuator columns.

e The connecting cable segments between neighboring attenuators in the same fence layer are modeled
as elastic or elasto-plastic massless elements that only transmit tensile forces.

¢ Contact forces are generated from contact stiffness and damping elements which act between the
central attenuator(s) and the impacting rocks or between adjacent attenuator columns in different
fence layers. These forces are determined from the current penetration or overlap distance and the
relative velocities of the bodies in contact at the common point of contact. Note, that contact forces
between adjacent attenuator columns in the same fence layer are neglected, since they are small
compared with the impact force between the central attenuator and the impacting rocks,

BARRIER MODEL EQUATIONS

Equations of Motion

The equations of motion for the ith fence attenuator within a fence layer modeled as a rigid body,
assuming planar dynamic motion confined in the x-y plane are given by:

mi ii = ZFn (1)
m; §; = LF 2
Lo, =ZM, 3)

fori=1,2,..N, where N, is the total number of fence attenuators, and N is defined as N = N, + D2.
This definition of N is because of the impacting rock(s) are assumed to hit the central fence attenautor
column. See Fig. 1 (c) for details of the attenuator DEM idealization. The corresponding resultant loading
terms in equations (1),(2) and (3), are:

LF, = T3 +B, +P, @

1.4



IM; = BgbcosO; + By bsin®; + T, acos8; + T, asin®,
+Pxi Ayl + Pyi Axi

©)

where T, and Tyi are the global x- and y- components of tension forces induced at the top overhead cable
connection, B,; and Eyi are the global x- and y- components of tension forces induced at the bottom

cable connection, P,; and P; are the global x- and y- components of the contact forces generated by the
rock attenuator impact, and g is the gravitational constant. For the ith attenuator the following parameters
are defined: m; is the mass, I; is the mass polar moment of inertia with respect to the centroid, x; and y;
are the global centroidal coordinates, and 0, is an angular coordinate defining the axial direction of the
attenuator. The distances of the top and bottom cable connections with respect to the attenuator centroid
are defined by a and b, respectively. The global x- and y- coordinates of the point of contact of the rock
with the attenuator measured with respect to the attenuator centroid are defined by A x; and Ay;. Note,
that if N is even, the mass and moment of inertia terms in equations (1) through (3), for i=1, are doubled.
This modification is required because of the assumed symmetrical impact geometry which implies that the
two central attenuators are hit simultaneously.

The corresponding equations of motion for impacting rocks are similar to those developed above for a
fence attenuator, and are not repeated for sake of brevity. Note, that the cable force terms in the equations
of motion for the rocks are zero.

Cable Attachment Forces

The top and bottom cable attachment segment forces are computed using simple equivalent axial cable
stiffness coefficients and determining the current change in cable segment lengths from their original
initial segment lengths. It is important to note that the initial tension in the cables must be accounted for
in these force calculations. For further details, see Mustoe and Huttlemaier [1]. When modeling the slack
in the bottom cables it should be noted that a significant amount of slack cable length must be taken up
before any tensile forces are transmitted to the attenuators.

Interaction Force Laws

A simple dynamic contact model is used, since the energy transfer mechanism between the rock and the
fence is of primary interest The normal contact element model is comprised of a linear spring stiffness
and viscous damper, connected in parallel, that acts in the contact normal direction at the instantaneous
point of contact. Behavior in the contact shear direction is defined by a shear contact element model
consisting of a linear spring stiffness and a slider that simulates a simple Coulomb dynamic friction
model. Note, that the contact normal and shear directions are defined by the boundary geometry of the
body with the smoothest tangent plane at the point of contact. The normal and shear contact element
model are active only when the discretized boundaries of the rock and the attenuator penetrate each other.

The normal instantaneous contact force, F,, is defined by:

E =

k8 +cb, 5,20
0 d <0
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where, k, is the normal contact stiffness, ¢ is the normal contact viscous damping coefficient, and 8, is
the normal penetration distance at the point of contact.

The shear instantaneous contact force, F,, is given by:

k5, k5| <p|E| and 3, >0
F={pF,  k[5|2p|F,| and 5, >0 ®
0 5, <0

where, k, is the shear contact stiffness, 8, is the shear slip distance at the point of contact and pi is the
dynamic coefficient of friction between the rock and the attenuator.

Note: A suitable value of the normal contact stiffness k, is specified by the user by limiting the
maximum penetration, or overlap, between the surfaces of the impacting two bodies to a predefined value.
Typically, this maximum penetration is defined as a small fraction of the average body dimension of the

contacting bodies. An estimate of k, cam simply be determined with an approximate energy calculation
for the two impacting bodies during an elastic collision. This approximate calculation assumes that the
bodies are approximated as two particles of mass m_ and mg, respectively. Using the above approach an
estimate for k is given by:

ko = [ m, mg/(m, +m)]vi. /A ©)

where v, and A_. are the estimated maximum normal relative speed and overlap distance at the
contact point respectively during the impact.

Restitution Model
In the discrete element numerical model, the energy loss due to impact is simulated with a viscous damper

which acts at the point of impact, P, in the contact normal direction. The normal viscous force in this
damper, which is the second term in the normal contact force equation (7), is given by:

F, =cbd (10)

< n

where 8,, is the normal component of the relative velocity of the fence with respect to the rock at the
point of contact, and is defined by:

8, =(Vpe— ¥p)- i (1)

Note, that ii is the unit outward contact normal direction at the point of impact, P, and ¥, and ¥, are
the velocities of the fence and the rock during the impact, respectively, and ¢ is the normal contact viscous
damping coefficient as defined in equation (7).
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In a dynamic impact between two bodies, the energy loss can be approximately modeled with a simple
restitution mode] that requires e, the coefficient of restitution, to be known apriori via experimental data.
Due to lack of available quantitative data concerning the impact energy losses during a barrier-rock
impact situation this simple model is appropriate. However, in order to apply the normal contact force
law, equation (7), a relationship between the viscous damping coefficient ¢, and the coefficient of
restitution ¢, is required. For this purpose, a simple approximate relationship between the viscous
damping coefficient, c, and the coefficient of restitution, e, can be derived by assuming that the rock and
the attenuator are approximated as two particles of mass m_ and mg, respectively. This results in the
relationship:

¢ = 2 In(1/¢)[k, m, m /(m, +m;)] "2/ [#2 + (in(17¢))2] " (12)

where k_ is the normal contact stiffness at P, the point of impact.

It should be noted that the use of equation (12) is only approximate when applied to a non-central impact
between a spherical rock and a cylindrical attenuator. Some numerical experimentation, therefore, is
usually required to obtain the precise value of the viscous damping coefficient which corresponds to a
specified value of the coefficient of restitution.

Contact Detection Algorithm

The multiple contacts which occur between the rocks and the fence attenuator columns are detected
automatically with an algorithm which performs the following functions:

(i) At the beginning of the analysis the problem space is subdivided into 2 grid of rectangular cefls or
subregions. The dimensions of these cells is defined to be a function of the average dimension of the
bodies within the problem and selected to minimize computational effort.

(ii) Simple geometrical checks are carried out to determine the cell locations for each body in the problem
throughout the simulation as the bodies move.

(iii) At every time step local body-to-body contact checking is performed on a cell by cell manner for cells
within the problem space. This algorithm is similar to that developed by Preece and Taylor [4], and the
method employed by Zhang [5] for modeling particle flow problems.

Explicit Time Stepping Scheme

The time stepping scheme employed in the DEM procedure is the standard explicit central difference
method [1}, applied to the equations of motions defined by equations (1) through (3). This leads to three
sets of generalized velocity and displacement update formulas for the centroidal coordinates of a body.
Large motion of the bodies ( the fence attenuators and rocks) is simulated with successive incremental
updating of the bodies current coordinates.

DEM IMPACT ANALYSES
Model Dimensions and Properties

A full size barrier model is used to study the dynamic response of the barrier system due to impacting
rocks. A similar full size prototype barrier system has been built by the Colorado Department of Highways
(CDOH). Limited experimental data, which is mainly qualitative, has been obtained from this barrier
structure by the CDOH. The dimensions and material properties for these numerical analyses are as
follows: .
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Span of top cable 55ft

Sag of top cable 55ft

Youngs modulus of cable 20,000 ksi
Cross section area of top cable 1.076 in2
Cross section area of bottom cable 0.25 in? (double wrapped)
Fence attenuator height 8ft

Fence attenuator width 25

Rod attachment length 251
Fence attenuator unit weight 12.2 bs/ft3
Rock diameter 258
Rock weight - 1200 Ibs
Rock impact velocity 53 fi/s?
Cocfficient of restitution 0.4
Maximum estimated contact overlap 051t

In the present computer model the cable behavior is modeled with a simple linear elastic model. It should
be noted that more realistic material models for the cable can be readily inserted into the present
algorithm. For example, a constitutive model with time dependent stiffness properties which accounts for
cable life [6], could be easily implemented.

Analysis Results

A series of analyses were performed to study the influence of the following design variables: (i) barriers
systems consisting of one and two fence layers, (ii) single and multiple rocks impacting the barrier
systems, and (iii) barriers with and without a bottom cable. All analyses assumed that the bottom cable
segments had a 0.5 fi initial slack length. The maximum estimated contact overlap of 0.5 ft was chosen to
approximate the local contact deformation of the fence attenators which are constructed from rubber tires

and rims.

Each computer run was performed with a time step length of approximately At =2 x 10~ seconds. The
analyses performed here required between 5 and 15 minutes of CPU, on an Intel 80386, 33 MHz CPU

microcomputer.

Geometrical snapshots of the barrier geometry and impacting rocks for four different simulations are
shown in Figs. 2 and 3. Figs. 2 (a) through (¢) illustrate a single rock impacting a single layer fence
barrier system with top and bottom cable attachments. Figs. 2 (d) through (f) illustrate a single rock
impacting a two layered fence barrier system with top and bottom cable attachments. Figs. 3 (a) through
(c) illustrate nine rocks (with a total combined weight of 1200 Ibs) impacting a two layered fence barrier
system with top and bottom cable attachments. Figs. 3 (d) through (f) illustrate a single rock impacting a
two layered fence barrier system with only a top cable attachment.

Comparison of Fig. 2 (a) through (c) and Fig. 2 (d) through (f) shows the following: (i) similar dynamic
rock motion during these two impacts, and (ii) the dynamic response of the two layered fence barrier is
significantly less than that of the single fence barrier system. The simulations for the two layered fence
barrier systems with one and two cable attachments respectively that were subject to a single rock impact
illustrate the effect of the bottom cable attachment. The bottom cable stiffens the barrier system and
decreases the rock velocity more than a barrier system without a bottom cable (see Figs. 2 (d) through (),
and Figs. 3 (d) through (e)). The effect of multiple or single rocks impacting a barrier system is illustrated
in Figs. 2 (d) through (f), and Figs. 3 (a) through (c). The overall response of the barrier system is similar
in these two cases.

A comparison of the rock velocities for the above simulations are illustrated in Figure 4, All of the barrier
systems with top and bottom cable attachments essentially absorb all the kinetic erergy of the impacting
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rock (or rocks). The barrier system with only a top cable only reduces the rock velocity from 53 fi/s. to 32
fi/s. Figs. 5 (a) and (b) show the time histories of the dynamic forces generated in the top joint of the
central vertical attenuator rod for the four simulations. Fig. 5 (a) shows the effect of the bottom cable in a
barrier system on the dynamic loads generated in the top joint. The high peak load at 0.05 seconds in the
barrier with two cables is because the 0.5 ft.of initial slack in the bottom cable has been taken up and
become taut. Fig. 5 (b) shows that the highest peak force is experienced by the single fence barrier system.
This figure also shows that the maximum force generated in the two layered fence barrier impacted by
nine rocks is similar in magnitude to the single rock impact simulation. Note the effect of the multiple
rock impacts is seen in the smaller peak loads after 0.08 seconds.

CONCLUDING REMARKS

A powerful numerical modeling tool has been developed for the non-linear dynamic impact modeling of a
flexible rockfall prevention barrier system. An approximate three-dimensional impact analysis has been
performed in an effective manner with a new two-dimensional DEM model. In this model the barrier
system and rock kinematics are assumed to be planar, whereas the cable stiffness effects are modeled in a
three-dimensional manner. Nonlinear cable effects can be modeled and have been discussed elsewhere [1].

A DEM simulation procedure for modeling flexible barrier systems with multi-layered fence structures
subject to single and multiple rock impacts has been developed and demonstrated. This numerical model
has been applied to a series of full scale barrier-rock impacts. The numerical results for this series of
impact simulations predict the maximum forces generated within the fence cables and the column
connections during a rock impact event. Corresponding predictions of post impact rock velocities have
also been made. These initial calculations presented here illustrate the ease with which a designer can
evaluate the effects of varying different barrier system design parameters on the barrier capacity. It is
hoped that further use of this numerical model by the CDOH, in conjunction with additional experimental
data, will enable the design engineer to improve upon the current methodology employed in the design of
flexible rockfall prevention barrier systems.
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Fig. 1 A Typical Flexible Rockfall Barrier System. (a) Three-dimensional View of a Two Layered Fence

Barrier, (b) Side View of a Two Layered Fence Barrier, (c) DEM Idealization of a Fence Attenuator
Column.
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Fig. 2 Geometrical .Snapshots of a Barrier-Rock Impact Simulation, Figs. 2 (a),(b) and () are for a Single
Layered Fence Barmrier, Figs. 2 (d),(e) and (f) are for a Two Layered Fence Barrier
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Fig. 3 Geometrical Snapshots of a Barrier-Rock Impact Simulation, Figs. 3 (a),(b) and () are for a Two

Layered Fm Barrier subject to a Multiple Rock Impact, Figs. 3 (d),(e) and (f) are for a Two Layered
Fence Barrier with a Top Cable Attachment only.
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Computer Instructions and Users Manual for FENCE
Abstract

This manual is a detailed guide for the FENCE discrete element computer
software package. It also describes the necessary steps that an engineer
must undertake to perform a dynamic impact rock-fence analysis using the
FENCE discrete element computer software package.

Contents

1.1 Introduction
11.2 Program Overview and File Definitions
1.3 Modeling Strategy with FENCE Software
I1.3.1 Details of the Fence-Rock Geometrical Configuration Definitions
required by FENCE Input Data
I1.3.2 Boundary Geometry Definition of the Ground, Attenuators and
Rocks with Superquadrics
1.4 Description of the FENCE Input Data File
II.5 Example Analysis Datafiles and Results
I1.5.1 Sample Input Datafile
I1.5.3 Sample Geometry Plotting Session
I1.5.4 Sample Time History Plotting Session
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IL1 Introduction

FENCE is a special purpose computer program based on the Discrete Element Method
(DEM) written for the Colorado Department of Highways (CDOH). The program
performs rock impact calculations for a specific type of flexible rockfall fence type, The
fence model used for this analysis of a series of attenuators suspended from a steel cable
and is based on a prototype developed by CDOH. The theoretical foundation of the
discrete element formulation for this specific application is discussed in previous chapters
of this report. The fence model description is also included earlier in this report, in
addition, fence input parameters are discussed below. This Appendix is intended as a
guideline for the program user and includes: (i) an overview of the computer software
including the different executable modules, and the associated input, output and graphics
data files, (ii) the general strategy required to perform an impact analysis using FENCE,
(iii) a detailed description of the parameters within a FENCE input file, and (iv) an
example that guides the user through the analysis procedure.

IL.2 Program Overview and File Definitions

The DEM dynamic fence-rock analysis software FENCE consists of three major modules:
(i) the computational DEM executable module (FENCE) that performs the dynamic
impact calculation, (ii) the interactive graphics geometrical snapshot and animation
executable module (GPLOT), and (iii) the interactive graphics executable module for time
history results (HPLOT).

For the DEM computational module, FENCE, the input data contains the following
parameters:

(1) fence and rock geometry and mass properties,

(ii) material model and properties for the fence cables,

(1ii) impact and restitution parameters between the fence and the rock,

(iv) the initial rock velocity prior to impact, and

(v) control parameters which describe the type and time interval sampling interval for
saving computed results.

This input data is contained in a data file with a user-specified name appended with the
extension .DAT.

The computed results are written to three different output data files with a user-specified
name appended with the extensions .OUT, .HST, and .GEOQ, respectively. These output
data files are called the printout file, the time history file, and the geometry file,
respectively.
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The printout file is used directly to verify the input data and for checking purposes by the
user. The time history and the geometry results data files are input data for the graphical
post-processing modules HPLOT and GPLOT, respectively.

The HPLOT graphics module interactively displays time history plots and produces
postscript graphics output. Typical time history data plots include; (i) centroidal
kinematics quantities such as position and velocity components for the rock and the
attenuator columns, and (ii) forces in the overhead and bottom cable segments, and the
attenuator hanger connections.

The GPLOT graphics module is used to display the following geometrical data for the
fence-rock system; (i) single snapshots of the fence-rock geometry at prescribed times
during the impact, or (ii) animation of the fence-rock motion throughout the impact.
Postscript graphics output of the single geometry snapshots can also be produced by
GPLOT.

In the example illustrated in Figure II.1 the user-specified name for the input data file is
fname]l, and the user-specified name for the output data files is fname?2.

fname2.HST fname2.GEO
{time history output) (geometrical output)

fname?.OUT
(printed output)

fname1.DAT
(input data)

fname2. HST
(time history output)

fname2.GEO [a] (gplotfie)
(geometrical output) s jé
=]
(interactive graphics and hardcopy) (interactive graphics and hardcopy)
(a) Dynamic Impact Calculation (b) time history graphics postprocessing  (¢) geomelry snapshot postprocessing

Figure I1.1 Execution Sequence of FENCE Computer Software:

The data file definitions for the above figure are as follows:

(1) fnamel DAT: Input File, where fnamel is a user defined name,

(i) fname2.QUT: Output File in ASCII format, where fname2 is a user defined name,
(ui) fname2 HST: Time History Plot File in binary format,

(iv) fname2.GEO: Geometry Plot File in binary format,

(v) hplotfile: "Postscript' File for printer plot of time history results,

and (vi) gplotfile: Postscript' File for printer plot of geometry snapshot results.

I1.3 Modeling Strategy with FENCE Software
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When performing a rock-fence impact analysis the following strategy is recommended:

(1) Gather the relevant design data about the fence structure and the impact conditions.
This data includes: (a) the geometrical configuration of the fence and attenuator masses,
and (b) the shape and mass of the impacting rock and its initial impact position relative to
the fence and the impact velocity.

(1)) Make a simple sketch of the side view ( x,y plane) of the impact geometry.
This will be used to define the input geometry data.

(i) Decide what results are required from the analysis. This includes the following: (a)
how much printed output is needed ( This can be voluminous, so be careful.), (b) which
elements (fence, rock and attenuators) must be flagged for results output purposes, (c)
what time history information is needed, and (d) what geometrical snapshot information is
needed.

(iii) Generate an input data file with a user defined name with an extension .DAT.

(iv) Perform an initial test run to verify the input data. This can accomplished by running
the analysis for one time step only. Check the input data by reviewing the .OUT file for the
following likely errors: (a) incorrect geometry of the fence, or initial position of the
impacting rock, (b) check fence and rock masses and initial rock velocity, (¢) check the
total span and initial sag of the top overhead cable, (d) check the horizontal spacing
between attenuator columns, (e) check maximum specified overlaps between rocks and
attenuators elements and restitution coefficient. Verify the problem geometry by viewing
the initial configuration with the GPLOT graphics module.

(v) Re-run problem for approximately 200 time steps to check the initial impact
kinematics, such as the initial speed and direction of the impacting rock. Check the initial
impact parameters graphically with GPLOT. If there is a problem with the impact
parameters change the initial impact parameters in the .DAT input file. If the data verifies
determine the number of time steps required for a complete simulation, change the DAT
input file, and make the final run for the complete impact simulation.

NOTE: There are number of example data files provided with the DEM computer

software. Therefore, many of the above steps can be performed quickly by copying an
existing data file and modifying it accordingly for a particular rock-fence impact analysis.

IL3.1 Details of the Fence-Rock Geometrical Configuration Definitions required by
FENCE Input Data

In a typical fence-rock impact analysis only the geometry of three bodies is required.
These bodies (or elements) are usually: (i) the ground or base element, (ii) the rock
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element, and (iii) the central attenuator element. Figure II.2. shows the general situation
for a single rock impacting a fence. For the problem defined in Figure II.2 it should be
noted that the geometry for elements 1 through 3 has to be defined. The geometry of
elements 4 through 7 is generated automatically. Note that elements 4 through 6 are slave
attenuator elements, and element 7 is 2 dummy fixed attenuator element .

4 semi span (S/2) —r

center-line ¥ d— R of-
o w i sa:g (h)
_____ [__‘——:;" % .
Central Attenautor 5] . /
v & ® Rock Element [E]
|
L ®
X [ — Stave (Fixed)
C© ) C )
Ground Element —=!  slaveattenuators <
(@) X-Y Plane View (b) Front View

Figure I1.2 Typical Geometrical Configuration for a Rock - Single Layer Fence Impact
Analysis

The following points should be noted in defining the geometry for a problem:

(i) the elements representing the ground, the rock and the central attenuator should be
defined in this order. For example, the ground is element 1, the rock is element 2 and the
central attenuator is element number 3. Note that if multiple rocks are defined they must
be defined sequentially. In a three rock impact analysis, the ground is element 1, the rocks
are elements 2 through 4, and the central attenuator is element number 5.

(ii) the total number of attenuators, not accounting for symmetry must be defined in the
input data. For the problem defined in Figure 2, the total number of attenuators is 7. This
number is computed from the central attenuator and three slave attenuators on both sides.
Note an additional attenuator element is used for fixity purposes in the FENCE model. In
this example it is element 7. This element, however, is not defined by the user.

(1i1) the total span, S, the sag height h, and the spacing between the centers of adjacent
attenuators d, must be defined
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(iv) the ith cable segment is defined as the segment on the immediate right of attenuator
element 1.

(v) an example of the element numbering for a two layered fence barrier is shown in
Figure I1.3.

(2nd Row)  (1stRow)
atteruators  attenuators

e
e i ®

[10]
ﬁ.
'%‘smemmé-

(a) Front View (2nd Row) (b) X-Y Plane View (c) Frort View {1st Row)

@ Rock Element

Figure I1.3 Typical Geometrical Configuration for a Rock - Double Layer Fence Impact
Analysis

IL3.2 Boundary Geometry Definition of the Ground, Attenuators and Rocks with
Superquadrics

In the two-dimensional discrete element FENCE model the rigid bodies that represent the
attenuators, the ground surface and the rock(s) are idealized with a superquadric
geometrical description. For further details of superquadric functions, see Barr (1981).

For the ith body the following parameters are defined: m, is the mass, I, is the mass polar
moment of inertia with respect to the centroid, X, and Y, are the global centroidal
coordinates, and ©, is an angular coordinate defining the direction of the local x-direction
defined by the principal axis of the body with respect to the global X-direction (see Figure
I1.4). The parameters that define the shape of the body are a;, b;, and n; and are defined as

the semi-lengths of superquadric in the local centroidal x- and y- directions, and the real
exponent which specifies the roundness of the superquadric respectively.
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Figure I1.4 Definition of Local and Global Superquadric Geometry

1L 4 Description of the FENCE Input Data File
This section describes the input parameters and the required format for the input file with

an extension .DAT. The READ statements described below are contained in the input
source file INPUT.FOR.

READ(*(A)) flinp
flinp = screen prompt for input data file (e.g. fnamel)

READ(*,/(A)) flout

flout = screen prompt for output files (e.g. fhame2)
READ(in '(a)) ptitle
ptitle = title line for input data (1st line in fnamel DAT)

READ(in *) fact dt.niter.nprint.nhisto.f penet

fact_dt = factor of critical time step length

niter = number of time steps (iterations)

nprint = number of time step intervals between writing results onto .OUT and
.GEO files

nhisto = number of time step intervals between writing results to .HST file

f penet = minimum penetration between rock and attenuator during impact defined

as fraction of the bounding dimensions of bodies.
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NOTE: This can be overidden by using an explicit definition of maximum penetration
between attenuator and rock elements and attenuator and attenuator elements. See
READ(iin, *) if overlap, ....

READ(in *) nel.igrav.grav

nel = number of elements (e.g., for slope, attenuators and rock (or rocks))
NOTE: usually nel = 3

igrav =1 ... gravity acts in positive y-direction

igrav =-1 ... gravity acts in negative y-direction

grav = gravitational constant

READ(in *) elstore

elstore = number of elements tagged for recording time history results

READ(in.*) (elnos(i).i=1,elstore)

elnos = array of element 1.D's tagged for recording time history results

READ(iin,*) totvar

totvar = no. of variables to be stored (max. =6)

READ(iin, *) (variab(i).i=1,hvmax)
variab = list of time history variable codes to be recorded for elements in elnos()
NOTE: these integer codes are defined in global. par source file and printed in the .QUT
file.
*** beginning of element loop, i = 1,nel

READ(in * sha oints

type = ( rock=0, attenuator=1)

shape = (sphere or )
( ellipsoid (rock) =0)
( rectang. block (rock) =1)
(cylinder (attenuator) =2)

points = number of nodal points on superquadric
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READ(iin,*) xlen,ylen,power.rho.barlen
xlen = length in x-dir. (a;)
ylen = length in y-dir. (b;)
power = power of superquad (n;)

rho = mass density
barlen = attachment length (attenuator only)

Note: See Figure I1.4 for superquadric geometry definitions

READ(iin *) xcent,ycent.theta,vx,vy,omega.fx.fy.mz

initial global geometrical and dynamic centroidal conditions for an element:

xcent = x-coordinate
yecent = y-coordinate
theta = rotation

vx = x-velocity

vy y-velocity

omega = angular velocity
fx = force in x-direction
fy = force in x~direction
mz = moment

READ(1in *) be(1),be(2).be(3),xl fix.yl fix

be(i) = centroidal fixities
be(i)=1 .. fixed
be(i)=0 .. free

be¢(1) = x-direction

be(2) = y-direction

be(3) = rotational

*** end of element loop

READ(iin *)span,sag.dcol.young,y top.y bot.nocab,
ncol.ecoeff.area top.area bot.frict.slack.brek top.

brek_bot

Definition of fence layer parameters:
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span = Horizontal cable span

sag = Vertical cable sag

dcol = Horizontal distance between columns

young = Youngs modulus of cable

y_top = y-coordinate of top cable connection

y_bot = y-coordinate of bottom cable connection
nocab = No. of top/bottom connections on attenuator
ncol = No. of tire attenuator columns in a fence layer
ecoeff = coefficient of restitution

area_top = x-section area of top cable

area_bot = x-section area of bottom cable

frict = coefficient of friction

slack = slack in between bottom connections
brek_top = top cable breaking strength

brek_bot = bottom cable breaking strength

READ(iin,*) no_fence, sp_fence

Mutltiple fence layer parameters:

no_fence = number of fence layers
sp_fence = center to center spacing between the two fence layer

READ(in*) rf_overlap, ff overlap

Definition of maximum penetration between attenuator and rock elements and attenuator
and attenuator elements in different fence layers:

rf_overlap = approximate maximum penetration between attenuator and rock
ff overlap = approximate maximum penetration between attenuator and attenuator in
different layers

*** End of Input Data file ***

ILS Example Analysis Datafiles and Results

IL5.1 Sample Input Datafile
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The following data set is for a double layer fence structure being impacted by a single
rock. This data set is called sample2 DAT on the diskette supplied with FENCE.

Data Optional Comments

DOUBLE LAYER FENCE ROCK WEIGHT = 1200 LBS

0.0 3000 60 30 0.05 fact_dt,niter,nprint,nhisto, fact_penet
3 -1 32.18 nel, igrav, grav

5 elstore

23,456 (elnos(i),i=1,elstore)

8 totvar

51524867835360 (variab(i),i=1,hvmax)

00 1.0 20 type,shape,points - SLOPE ELEMENT
10.0 0.5 0.0 0.10.5 xlen,ylen,power,rho,barlen
0.0-500.00.0000.00.0.0. xc,yc,th,vx,vy,oma,fx fy, mz

1.0 1.0 1.0 0.0. be(1),be(2),be(3), xfix, yfix

0.0 0.0 4.0 type,shape,points - ROCK

1.201 1.201 0.0 5.13 0.0 xlen,ylen,power,rho,barlen
2.4510.00.0-65.0.034.0.0.0. xc,yc,th,vx,vy,oma,fx fy,mz

0.0 0.00.00.0. be(1),be(2),be(3),xfix, yfix

1.0 2.0 2.0 type,shape,points - FENCE attenuator
1.25 4.0 0.00.76 2.67 xlen,ylen,power,rho,barlen
0.00.00.00.00.00.00.0.0. xc,yc,th,vx,vy,oma, fx fy, mz

0.0 0.0 0.0 0.0. be(1),be(2),be(3),xfix, yhix
55.05.52.52.0e76.67-4.0213041.0760.250.00.5 1e8 1e8

2,26 - no. fences, spacing between fences
0.6,0.5 - max. rock and fence overlaps

span,sag,dcole,y t,y bnocab,ncolecoeff,a t,a b frictslack,brek top,brek bot

**k¥¥k Fnd of DATA *¥k*%

I1.5.2 Sample Qutput Datafile

The following is selected printed output from sample2.OUT that was produced from
executing FENCE with the data set sample2. DAT. This output data set is on the diskette
supplied with FENCE.

DOUBLE LAYER FENCE ROCK WEIGHT = 1200 LBS
factor of critical time step = .000E+00

total no. of time steps = 3000

time steps per printout = 60

history time steps = 30
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no. of discrete elements = 3
igrav ( =1 for positive y-dir.) = -1
gravity = .3218E+02
no. of elements for time history records = 5
element history array:
2 3 4 5 6

no. of variables to be stored (max. 8) = 8

list of variables to be stored:
(see pointers defined in global.par)

51 52 48 6 7 8 35 36

Properties for element no.: 1

Type (rock=0,fence=1) = 0
Shape = 1
( sphere or )

(ellipsoid (rock) =0)

( rectang. block (rock) = 1)

( cylinder (fence) =2)
Number of points on superquad = 2
Length in x-dir. (large radius)= .100E+02
Length in y-dir. (short radius)= .500E+00
Power of superquad = .000E+00
Mass density = _100E+00
Attachment length (fence only) = .500E+00

Properties for element no.: 2

Type (rock=0,fence=1) = 0
Shape = 0
( sphere or )

(ellipsoid (rock) =0)

( rectang. block (rock) = 1)

(cylinder (fence) =2)
Number of points on superquad = 4
Length in x-dir. (large radius)= .120E+01
Length in y-dir. (short radius)= .120E+01
Power of superquad = _000E+00
Mass density = 513E+01
Attachment length (fence only) = .000E+00

Properties for element no.: 3

Type (rock=0,fence=1) = 1
Shape = 2
( sphere or )

(ellipsoid (rock) =10)
( rectang. block (rock) =1)
( cylinder (fence) =2)
Number of points on superquad = 2
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Length in x-dir. (large radius)= .125E+01
Length in y-dir. (short radius)= .400E+01
Power of snperquad = _000E+00
Mass density = 760E+00
Attachment length (fence only) = .267E+01

Element initial conditions
el. x-loc y-loc theta vx vy angv fx
fy mz
1 .000E+00 -.500E+01 .C00E+00 .000E+00 .000E+00 .000E+00 .000E+0C .000E+00 .000E+00
2 .245E+01 .000E+00 .000E+H00 -.650E+02 .000E+00 .340E+H02 .000E+00 .000E+00 .000E-+00
3 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .O00E+00 .000E+00 .000E+00
Element fixities
el. fix-x fix-y fix-r x_local y_local
1 1 1 1 .000E+00 .000E+00
2 0 0 0 .G00EH00 .000E-+00
3 0 0 0 .000E+00 .000E+00

Description of Parameter Names in Element Data Structure

1D number Description

SMALLEST POINTER

ELEMENT SHAPE(E.G. SPHERICAL)

X - LOCATION OF ELEMENT CENTROID

Y - LOCATION OF ELEMENT CENTROID
ELEMENT GLOBAL ROTATION - THETA

X - VELOCITY OF ELEMENT CENTROID

Y - VELOCITY OF ELEMENT CENTROID
ANGULAR VELOCITY OF ELEMENT - OMEGA
ELEMENT LENGTH X-DIR.

10 ELEMENT LENGTH Y-DIR.

11 POWER OF SUPERQUAD

12 NUMBER OF NODAL POINTS ON SUPERQUAD

13 ATTACHMENT LENGTH (FENCE ONLY) = 0.0 FOR
14 ELEMENT DENSITY

15 ELEMENT MASS .

16 ELEMENT MASS MOMENT OF INERTIA

17 EXTERNAL CENTROIDAL FORCE X-DIR.

18 EXTERNAL CENTROIDAL FORCE Y-DIR.

19 EXTERNAL CENTROIDAL MOMENT

20 CENTROIDAL BOUNDARY CONSTRAINT, X-DIR.
21 CENTROIDAL BOUNDARY CONSTRAINT, Y-DIR.
22 CENTROIDAL BOUNDARY CONSTRAINT, ROTATION
23 TOTAL APPLIED ELEMENT LOAD, X-DIR.

24 TOTAL APPLIED ELEMENT LOAD, Y-DIR.

25 TOTAL APPLIED ELEMENT LOAD, ROTATION
26 OLD ELEMENT VELOCITY AT CENTROID X-DIR.
27 OLD ELEMENT VELOCITY AT CENTROID Y-DIR.
28 OLD ELEMENT VELOCITY AT CENTROID ROT.
29 NORMAL CONTACT STIFFNESS

30 SHEAR CONTACT STIFFNESS

31 MASS DAMPING FOR TRANSLATION

32 MASS DAMPING FOR ROTATION

33 LOCAL X-COORDINATE OF A FIXED PT. ON ELE
34 LOCAL Y-COORDINATE OF A FIXED PT. ON ELE

WO WN
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35
36
37
38
39
40
41
42
43
44
45
46
47
43
49
50
51
52
53
54
55
56
57
58
59
60
61

ELEMENT KINETIC ENERGY (TRANSLATIONAL)
ELEMENT KINETIC ENERGY (ROTATIONAL)
ELEMENT KINETIC ENERGY (TOTAL)

ELEMENT GRAVITATIONAL ENERGY

NODAL SPRING ENERGY (AXIAL)

NODAL SPRING ENERGY (SHEAR)

NODAL SPRING ENERGY (BENDING)
INCREMENTAL SPRING DISPLACEMENT (AXIAL)
INCREMENTAL SPRING DISPLACEMENT (SHEAR)
INCREMENTAL SPRING ROTATION

ELEMENT POTENTIAL ENERGY (GRAVIT. & SPRI
TOP CABLE LENGTH

BOTTOM CABLE LENGTH

TENSION IN TOP CABLE

X-COMPONENT OF TENSION IN TOP CABLE
Y-COMPONENT OF TENSION IN TOP CABLE
FORCE IN TOP JOINT OF ATTENUATOR
TENSION IN BOTTOM CABLE

X-COMPONENT OF TENSION IN BOTTOM CABLE
Y-COMPONENT OF TENSION IN BOTTOM CABLE
STIFFNESS OF TOP CABLE

STIFFNESS OF BOTTOM CABLE

INITIAL LENGTH OF BOTTOM CABLE
BREAKING STRENGTH OF TOP CABLE
BREAKING STRENGTH OF BOTTOM CABLE

TOP CABLE PLASTIC DEFORMATION (FT)
LARGEST POINTER (CHECK WITH NPRMAX !)

Fence Support Data Parameters

Horizontal cable span = 55.0
Vertical cable sag = 5.50
Horizontal distance between columns = 2.50
Youngs modulus of cable = .200E+08

y-coordinate of top cable connection = 6.67
y-coordinate of bottom cable connection = -4.00
No. of top/bottom connections on fence = 2

No. of tire columns in fence layer = 13
coefficient of restitution = .400
x-section area of top cable = 1.08
x-section area of bottom cable = 250
coefficient of friction = .000

slack in between bottom connections = .500
top cable breaking strength = .100E+09
bottom cable breaking strength = .100E+09
No. of fence layers = 2

gap between fence layers = 2.60

Maximum overlap (rock/fence)

.6000E+00

Maximum overlap (fence/fence) = .5000E+00

Element I.Ds of attenuators in fence layer: 1
IDnos.= 3456789
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Element LDs of attenuators in fence layer: 2
IDnos. = 111213141516 17

clement mass m.o.i

4000E+02 .1337E+04
.3723E+02 .2148E+02
.2985E+02 .1708E+03
.2985E+02 .1708E+03
.2985E+02 .1708E+03
2985E+02 .1708E+03
\2985E+02 .1708E+03
2985E+02 .1708E+03
2985E+02 .1708E+03
10 .2985E+H02 .1708E+03
11  .2985E+02 .1708E+03
12 .2985E+02 .1708E+03
13 .2985E+02 .1708E+03
14 .2985E+02 .1708E+03
15  .2985E+02 .1708E+03
16  .2985E+02 .1708E+03
17  .2985E+02 .1708E+03
18  .2985E+02 .1708E+03

VeI WU bW =

Normal contact stiffness (rock/fence) = .1944E+06
Maximum fence penetration = .5000E+00

Normal contact stiffness (fence/fence) = .2522E+06
Maximum fence penctration = .5000E+00

Normal contact stiffness (ground/rock) = _8723E+08
Information: S/R chekdt - time step=  .827E-04
note, max. stable time step = B27E-04

max time step governed by axial stiffnesses
of elementno. = 3

time= .496E-02 secs
el. x y theta vx vy angv

1 .000E+00 -.500E+01 .000E+00 .000E+00 .000E+00 .000E-+00
2 216E+01 -402E-03 .165E+00 -490E+02 -.158E+00 .306E+02
3 -428E-01 .166E-05 .591E-03 -200E+02 .179E-02 .378E+00
4 -228E-04 545E-01 .266E-04 -204E-01 -215E-02 .237E-01
5 -429E-07 .218E+00 .S500E-07 -517E-04 -.148E-05 .603E-04
6 -474E-10 490E+00 .552E-10 -.725E-07 -.149E-08 .845E-07
7 -336E-13 .871E+00 .392E-13 -.627E-10 -201E-11 .730E-10
8 -165E-16 .136E+01 .192E-16 -.361E-13 .148E-12 .421E-13
9 -.585E-20 .196E+01 .682E-20 -.147E-16 -.280E-12 .172E-16
10 .000E+00 .550E+01 .000E+00 .000E+00 .000E+00 .000E+00
11 -260E+01 .384E-17 .000E+00 .000E+00 .152E-14 .000E+00
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12 -260E+01 .545E-01 .000E-+00
13 -260E+01 .218EH00 .000E+00
14 -260E+01 490E+00 .000E+00
15 -260E+01 .871E+00 .000E+00
16 -.260E+01 .136E+01 .000E+00
17 -260E+01 .196E+01 .0O0E-+00
18 -260E+01 .550E+01 .0Q0E+00
time = .993E-02 secs

el x y theta wvx vy
1

2

3 -.194E+00

4 -791E-03

5 -.430E-05

6 -.156E-07

7 -393E-10

8 -711E-13

9 -962E-16

10 .000E+00 .550E+01 .000E+00
11 -260E+01 -.123E-04 .139E-03 -
12 -260E+01 .545E-01

13 -260E+01

14 -260E+01 .490E+00 .332E-18 -
15 -.260E+01 .871E+00 .0COE+00
16 -260E+01 .136E+01 .000E+00
17 -260E+01 .196E+01 .000E+00
18 -.260E+01 .550E+01 .000E+00
time= .149E-01 secs

el. x y theta vx vy
1

2

3

4 -725E-02

5 -940E-04 .218E+00

6 -.638E-06 .490E+00

7 -314E-08 .871E+00

8 -.116E-10 .136E+01

9 -331E-13 .196E+01

10 .000E+00

11 -266E+01

12 -260E+01

13 -260E+01 .218E+00 .184E-06 -
14 -.260E+01 .490E+00

15 -260E+01 .871E+00

16 -260E+01 .136E+01

17 -260E+01 .196E+01 .408E-19 -
18 -260E+01 .550E+01 .000E+00

.000E+00 .182E-15 .000E+Q0
.000E+00 ~.109E-14 .000E+00
.000E+00 .200E-15 .000E+00
.000E+00 -.101E-14 .000E+H00
.000E+00 .148E-12 .000E+00
.000E+00 -.280E-12 .C00E+00
.000E+00 .000E+00 .000E+00

ang-v

.000E+00 -.500E+01 .000E+00 .000E+00 .000E-H)0 .000E+00
.196E+01 -.154E-02 .310E+00 -.332E+02 -.295E+00 .285E+02
.262E-03 .160E-02 -377E+02 .224E+00 -.945E+00

.543E-01 .922E-03 -.454E+00 -.988E-01 .529E+00
.218E+00 .501E-05 -303E-02 -.461E-03 .354E-02
AS0E+00 .182E-07 -.134E-04 -.167E-05 .156E-04
.871E+00 .458E-10 -.400E-07 -.799E-08 466E-07
.136E+01 .829E-13 -.843E-10 - 449E-10 .982E-10
.196E+01 .112E-15 -.130E-12 -.778E-12 .152E-12

.000E+00 .000E+00 .000E+00

.110E+01 -.557E-01 .537E+00

.562E-08 -.353E-04 - 858E-06 .411E-04
218E+H00 .679E-13 -.547E-09 -.140E-10 .638E-09

.312E-14 .379E-15 .363E-14

.000E+00 -.202E-14 .000E+00
.000E+00 .296E-12 .000E+00
.000E+00 -.561E-12 .000E+00
.00CE+00 .000E+00 .000E+00

ang-v

.000E+00 -.500E+01 .000E+00 .000E+00 .000E+00 .000E+00
.183E+01 -.342E-02 .444E+00 -211E+02 -477E+H00 .252E+02
~.357E+00 .769E-03 -.800E-02 -.307E+02 -.770E-+00 -.344E+01

.530E-01 .845E-02 -.225E+01 -405E+H00 .262E+01
.110E-03 -494E-01 -248E-01 .576E-01
.744E-06 -.399E-03 -.153E-03 .465E-03
366E-08 -.229E-05 -.133E-05 .267E-05
.135E-10 -.971E-08 -.149E-07 .113E-07
.385E-13 -.313E-10 -.198E-09 .365E-10

.550E+01 .000E+00 .000E+00 .000E-+00 .000E+00
.193E-02 - 599E-03 -.194E+02 .163E+01 -.242E+00
.545E-01 .630E-04 -363E-01 -414E-02 .423E-01

.157E-03 -.769E-05 .183E-03

281E-09 -.321E-06 -.163E-07 .374E-06
260E-12 -.370E-09 -.397E-10 .431E-09
.160E-15 -272E-12 .357E-12 .317E-12

.109E-15 -.841E-12 .126E-15
.000E+00 .000E+00 .000E+00
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IL5.3 Sample Geometry Plotting Session

The following output is from the computer screen during a sample session using GPLOT,
the interactive geometry plotting module. This session produces an animation of the
sample2 analysis:

NOTES:
(i) The command g executes a batch file g.bat which executes gplot from a subdirectory.
(ii) The user responses are prefixed with >.

>g
Enter input-data file name (Exclude Ext.) : sample2
Enter Plotting Time:
>11
do you want to plot element numbers (y/n)?
>n
current window coordinates are:
X-min y-min X-mMax y-max
-100 -150 100 969
do you want to change the window coords (y/n)?
>n
animate or single frame (a/s) ?
>a

Stop - Program terminated.

The hardcopy output from grock.ps is shown in Figure I1.5 below.

ROCK WEIGHT = 128@ LBS

TINE = .24B2E-81 SEC.

Figure I1.5 A Geometry Snapshot Plot
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X - VELOCITY OF ELEMENT CENTROID

I1.5.4 Sample Time History Plotting Session

The following output is from the computer screen during a sample session using HPLOT
the interactive time history plotting module. This session produces a time history of the x-
component of the rock velocity throughout the impact for the sample2 analysis. A
hardcopy file called vrock.ps is created during the session. The hardcopy output from
vrock.ps is shown in Figure 11.6:

NOTE: The command h executes a batch file h.bat which executes hplot from a

subdirectory.

1p !
75

-3.60

-5.85

-6.50

ROCK WEIGHT = 122¢ LBS

KEY

N1

.85

.10

.15 .20 .25

TIME IN (5ECS.]

Figure I1.6 Time History of x-component of Rock Velocity
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C: \GRAHAM\FENCE >h

C: \GRAHAM\FENCE >hplat\hist

ENTER HISTORY PLOT FILENAME (2¢ CHARACTERS MAX.)
sample2
Select

2

-
~t

from Available Elements Numbers:

4

5

6

Enter Element Number:
2

Do you want to select

Element Number

Enter y(es)
n

4

4

prd

-

or n(o)

is Selected

another element?

Select y-values from available components:
FORCE IN TOFP JOINT OF ATTENUATOR
TENSION IN ROTTOM CAEBLE

TENSION IN TOF CABLE

X — VELOCITY OF ELEMENT CENTROID

Y - VELOCITY OF ELEMENT CENTROID
ANGULAR VELOCITY OF ELEMENT - OMEGA
ELEMENT KINETIC ENERGBY (TRANSLATIONAL)
ELEMENT KINETIC ENERGY (ROTATIONAL)
Enter Case Number:

Case:
Case:
Case:
Case:
Case:
Case:
Case:
Case:

Case:
Case:

X — VELOCITY OF ELEMENT CENTROID

7

8

7 ELEMENT KINETIC ENERGY (TRANSLATIONAL)
s 8 ELEMENT KINETIC ENERGY (ROTATIONAL)
Enter Case Number:

is Selected

Do you want to plot element x-values

n

1

Enter Flotting Time:

1

do you want to change plotting titles 7
ROCK WEIGHT = 1200 LES

n

do you want to change plotting x-title ?
TIME IN

n

(SECS.)

do you want to change plotting y—-title 7
X = VELOCITY OF ELEMENT CENTROID

n

do you want to change ymin, ymax 7

Y
n

do you want to change no.

min =

ndiwvx

n

- &500E+02

=
J

ndiwvy

ymax

S

-

. 7436E+01

of ¥ and y grid divisions 7
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Ll L oLl el berLrrerfrferer
CCLLLL L e LI LI EELEF L L ELLLL Ll LEEEEELLLCEELELLL
COrefrceerrorccrrrfrerecrrrrcfcreerrrcrcrrcrcrccccrreeceerrrreer
L LEL L L LI E L L L Lr L LELLr L CrLceLrerrirecececrrs
L L L L Ll Ll errerrrreer
L L L L L L LI IOl CeLLrerccirrecrcerrierr
CLCCrroceres (SUREEN CIMAGE COFC TAME HYSTORY Y £CLLLCLOCrecrrice
L L L bl LI LeC bl LrLEcrefrrrerrreecerr
CLLLECLECLLr el eccrercrerrrrrrLceLrcerreerccerere
L e L eIl LeEreirrrrerrrrerrrerrrrrere
CLCLELrCLLrLECLLLL L L b LLrCECLELCrCELrrecrcrrrcccrceoerrere

.uDo you want a hardcopy output file (y/n)?

Y
enter filename — max 20 characters

virock.ps
Hardcopy file is vrock.ps

do you want to dump history data to a file (y/n) ?

Y

enter data file name, 40 characters max.
vrock

data file name is:

vrraock.RAW

enter return to continue

Do you, want to do another plot,new plot file or guit?
Enter ‘a(nother) /n(ew)/q{uit)

Stop - Program terminated.
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