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SUMMARY 

This report describes the research work performed for the Colorado Department of 
Highways during the period from June 1991 to March 1993, under the research contract 
entitled Analytical Simulation of Rockfall Prevention Fence Structures, CSM Contract 
No. 3422. 

The work performed during this contract included the following tasks:(i) the development 
of a novel numerical model for the dynamic simulation of a rock:fhll prevention fence using 
the discrete element method (DEM), (ii) the numerical implementation of the DEM 
numerical model in a computer code to be used by engineers at the Colorado Department 
of Highways, and (iii) demonstration and validation of the DEM computer technique to 
simulate rockfall impacts against rockfall fences. 

The original DEM numerical model was designed to analyze flexible rockfall prevention 
fences that were comprised of a single layer of columnar attenautors. In an additional 
research task funded under this contract the DEM model was extended to deal with fences 
with two layers of attenuators. The details of this additional research work are contained 
in Appendix I. 

The dynamics simulation software was developed on an Intel based CPU 80486 
microcomputer. This hardware environment was also used to perform the dynamic 
analyses which are described herein. 

1.0 INTRODUCTION 

The purpose of a rock:fhll prevention fence is to decrease the kinetic energy of a falling 
rock or rocks down a mountain valley. Such fences are installed near mountain highways 
to minimize the risk of automobile accidents caused by rock:fhll events. The fence type 
being investigated consists of hanging columnar attenuator masses assembled of used 
truck tires and rims, threaded onto a steel rod, which are suspended from a horizontal 
overhead wire cable and connected by a bottom cable (see Fig. 1). When a rock hits the 
fence the hanging columns begin to move in a pendulum-like motion. This mechanism 
transfers a significant amount of the rock's kinetic energy during the impact phase. Since 
the fence structure is flexible and not rigid, the damage to the fence during most rock 
impacts is only slight. In many cases the decrease in rock velocity after its impact with the 
fence is sufficient so that the rock will harmlessly come to rest shortly after impacting the 
fence, and not enter the highway. In extreme cases where very large rocks (over 2000 lbs) 
moving with high velocity hit the fence, the fence capacity is exceeded. In this situation the 
hanger connection at the top of the steel rod that passes through the center of attenuator is 
designed to break. This failure results in the loss of an attenuator column but not the 
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complete breakdown of the fence structure. This design feature allows the fence to be 
repaired easily, with the simple reattachment of a new attenuator column [2]. 

The numerical model reported herein, provides a technique that can be used in 
conjunction with experimental methods to estimate the fence capacity. The present study 
determines the effects of varying fence design and rock impact parameters on the 
magnitudes of the relevant dynamics response parameters. For example, the dynamic 
impact calculations study the effects of different rock sizes and rock velocities on 
particular fence configurations. Fence response parameters of particular importance 
include; (i) the forces in the hanger connection and the overhead and bottom cables, and 
(ii) the decrease in rock velocity due to impact. 

The numerical procedure developed to perfonn this dynamic impact simulation is based 
upon the DEM. This procedure solves the nonlinear coupled dynamic equations of motion 
for the idealized fence structure and the impacting rock. The DEM model assumes that the 
fence structure can be idealized as a system of connected rigid bodies, and the rock as an 
impacting rigid body. The dynamic fence-rock impact conditions are modeled with a 
penalty fonnulation and an automatic contact detection algorithm. This numerical 
procedure utilizes an explicit time stepping scheme to solve the discretized equations of 
motion. 

1.1 The Prototype Fence Structure and Impacting Rocks 

A typical fence structure, similar to those presently being investigated, is shown in Fig. 2. 
Cylindrical column attenuator masses are connected to a steel wire overhead cable through 
hanger attachment cables. These column masses consist of layers of used truck tires on 
their rims that are threaded onto a vertical steel rod. The introduction of the bottom cable 
connection ensures that the combined mass of all attenuators is active during an impact. It 
should be noted that any slack in the bottom cable results in a delayed displacement action 
between attenuators. The area of the bottom cable is approximately one quarter of the 
area of the main overhead cable with the same modulus of elasticity as the overhead cable. 
The bases of the attenuator columns are close to the ground to capture low falling rocks. 
In some cases the attenuator columns are of different lengths to adapt to the uneven 
profile of the terrain. 

The sizes of the most likely impacting rocks range between 500 lbs to 1500 lbs. 
Corresponding impact rock velocities vary between 50 and 70 flJs. It should be noted that 
larger impacting rocks that are over 2000 lbs in weight are likely to cause significant fence 
damage, and exceed the fence capacity. 

1.2 The Discrete Element Method 

Discrete element methods are a family of related numerical techniques specifically 
designed to solve problems in applied mechanics, which exhibit gross discontinuous, 
material and geometrical, behavior. For example, many DEM's are used to analyze systems 
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of interacting rigid or deformable bodies undergoing large dynamic or pseudo static 
motion, governed by complex constitutive behavior. It should be noted that the solutions 
to problems of this type are often intractable by conventional continuum based methods 
such as finite element, finite difference and boundary element procedures. 

A typical discrete element algorithm includes the following features: 

(i) an automatic contact detection scheme which can recognize new contacts as the 
simulation progresses, and update the contact topology appropriately, 
(ii) a contact force model to determine the forces acting between interacting bodies, and 
(iii) a time integration scheme to solve the governing equations of motion, which allows 
for finite displacement and rotation of the discrete bodies within the system. 

Applications of DBMs include; the mechanical modeling of granular media, failure 
analysis of brittle materials (ceramics, rocks, ice, etc.), mechanical behavior of fractured 
and jointed rock masses, and discrete simulation of compaction in material processing of 
ceramics and powder technologies [3,6]. More recently, discrete elements have also been 
applied to continuum. structural mechanics problems, which include large displacement 
dynamic analysis ofelasto-plastic beams [4], and deep-ocean mining pipes [5]. 

2.0 THE FENCE MODEL 

The modeling aspects and assumptions of the discrete element model, namely the rigid 
body dynamics of the fence and rock, the cable behavior, the rock/attenuator impact 
interaction model and the numerical integration of the dynamic equations of motion are 
discussed below. 

2.1 Rigid Body Dynamics of Attenuator Columns and Rock 

The attenuators and the impacting rock are both represented by three-dimensional rigid 
bodies. The local elastic or plastic deformation that occurs in the vicinity of the point of 
contact during the impact is accounted for within the contact force law. Details of the 
contact model are given in a subsequent section of this paper. The fence attenuator 
columns are modeled as circular cylinders, and the impacting rock as a sphere. The 
kinematics of the fence attenuator columns and the rock is assumed to be planar. The 
dynamic motion of the fence attenuators and rock are therefore, confined to the X, y plane 
(see Fig. 2b). 

2.2 Rigid Body Boundary Geometry 

A superquadric geometrical formulation is used to describe the two- dimensional surface 
geometry of the outline of attenuators and the rock. This geometrical surface model can 
be used to describe any shape, from an ellipse to a rectangle. The boundary shape of the 
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two-dimensional body is defined by a number of boundary nodal points on the super 
ellipse: 

(x/at + (y/bt = 1 (1) 

Notes: (i) X, yare principal local centroidal coordinates for the super ellipse, and (ii) the 
parameters a, b and n define the bounding dimensions and shape of the super ellipse. 

The current positions of these boundary nodes are then utilized to check for geometrical 
contact or overlap with neighboring bodies. This check is performed with a simple 
algebraic calculation of an inside-outside function. It should be noted that the superquadric 
representation provides analytical formulae for the convenient computation of the outward 
normal and curvature at any point on the boundary of the body. For further details, the 
reader is referred to [1]. 

2.3 Impact Geometry Conditions 

It is assumed that the rock hits the central portion of the fence (Fig. 1). This assumption 
allows the use of symmetry. Furthermore, since the average dimension of the rock is 
approximately equal to the diameter of an attenuator, if the fence contains an odd number 
of attenuators, the rock impacts the central attenuator only, otherwise, the rock impacts 
the two central attenuators symmetrically and the impact loads are equally distributed 
between the two central attenuators. In this situation the two central attenuators are 
assumed to move together. 

2.4Cable Connections 

The sections of cable connecting adjacent attenuators are idealized as massless cable 
elements with linear elastic or perfect elastic-plastic material behavior. The pre-impact 
position of the overhead cable is defined as the static equilibrium shape due to the self 
weight of the attenuator columns. This position is simply computed by a direct application 
of the static equilibrium equations for the fence. These cable elements transmit tension 
only and may become slack if appropriate kinematic conditions occur. Note, that since the 
attenuators are constrained to move only in the X, y (Fig. 2b) plane, the z-coordinates of 
the ends of the cable elements do not change. 

2.5 Dynamic Contact Forces 

The dynamic contact forces generated during the impact are determined with a penalty 
formulation. The penalty method employs a contact "element" at the point of impact 
between the two bodies that is defined by a combined concentrated stiffness and damping 
element. This contact "element" produces forces that depend upon the current penetration 
or overlap distance and relative impact velocity between the impacting rock and the 
attenuator at the point of impact. These forces are applied in an equal and opposite 
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manner to the rock and the attenuator. Further details of the penalty approach are given in 
a subsequent section of this report. 

Note, that only the central attenuator(s) is impacted. The other attenuators act as slaves 
that move only because of forces transmitted through cables connecting adjacent 
attenuators. Furthermore, note that contact forces between adjacent attenuator columns 
are neglected, since they are small compared with the impact force between the central 
attenuator and the impacting rock. 

3.0 COMPUTATIONAL DETAILS OF FENCE MODEL 

3.1 Attenuator Equations of Motion 

The equations of motion for the ith fence attenuator, assuming that the dynamic motion is 
planar and confined in the x-y plane are given by: 

m·x. = ~F· 1 1 Xl 
(2) 

m.y. = ~F· 
1 1 Yl (3) 

Ii 9j = ~ M j (4) 

for i = 1,2, ... N, where Na is the total number offence attenuators, and N is defined as N 
= (Na + 1)/2. See Fig. 3 for details of the attenuator identification numbering scheme. The 
corresponding resultant loading terms in equations (2),(3) and (4), are: 

(5) 

(6) 

(7) 

where Txi and Tyi are the global x- and y- components of tension forces induced at the top 

overhead cable connection, Bxi and Byi are the global x- and y- components of tension 

forces induced at the bottom cable connection, P xi and P yi are the global x- and y­

components of the contact forces generated by the rock attenuator impact, and g is the 
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gravitational constant. For the ith attenuator the following parameters are defined: mj is 

the mass, I j is the mass polar moment of inertia with respect to the centroid, g is the 

gravitational constant, Xi and Yi are the global centroidal coordinates, and q is an angular 
coordinate defining the axial direction of the attenuator (see Fig. 4). The distances of the 
top and bottom cable connections with respect to the attenuator centroid are defined by a 
and b, respectively. The global x- and y- coordinates of the point of contact of the rock 
with the attenuator measured with respect to the attenuator centroid are defined by A Xi 

and AYi' Note, that ifN is even, the mass and moment of inertia terms in equations (2) 
through (4), for i=l, are doubled. This modification is required because of the assumed 
symmetrical impact geometry. 

3.2 Rock Equations of Motion 

The corresponding equations of motion for the rock are: 

(8) 

(9) 

(10) 

where mr is the mass of the rock, Ir is the rock mass moment of inertia with respect to its 

centroid, and 6 Xr ,6 y I are the global x- and y- coordinates of the point of contact of the 
rock with the attenuator, with respect to the centroid of the rock. 

3.3 Top Cable Attachment Forces 

In Fig. 5, the top overhead cable segment with end points Tj and Ti+1 between attenuators 

i and i+ 1 is shown. In a coordinate system with the origin at point ~, the coordinates of 

pointTi+1 are denoted by (xi+P Yi+P dJ, where dj is the horizontal distance between 
attenuators i and i+ 1, which is constant because of the assumption of planar kinematics. At 

time t = 0, the initial position of the point~+l with respect to point ~ is given by: 

(11) 
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where H = hi+1 - hi' Note that the initial vertical positions,hi, which define the pre­
impact configuration are calculated from static equilibrium as discussed previously. The 
initial unstretched length of the cable segment at time t = 0 is computed from: 

e . = (d~ + HZ) 112 - T. / k. 
01 1 01 1 

(12) 

where k j is the axial stifihess of the cable segment, and Toi is the initial tension of the 
cable segment in the initial equilibrium condition. The current length of the cable segment 
at time t is given by: 

e. = (x~ + y~ + d~)ll2 
1 1 1 1 

(13) 

The tension in the cable segment at time t is computed from: 

(14) 

Note, that the above equation models cable slack correctly and non-physical compressive 
forces cannot be transmitted. The corresponding global x- any y- components of the cable 
tension are given respectively by: 

T · = Ty. / e· )'1 1 1 1 
(15) 

The resultants global x- and y- components of forces acting on the ith attenuator due to 
the tension at the top cable connection induced in the cable segments between the (i-1 )th, 
ith and (i + l)th attenuators is determined from: 

T. = T. - T · l and T. = T.-T · l ~ ~ ~- ~)'1)'1- (16) 

It should be noted that for the first attenuator (i=l), Txo = Tyo = 0, and because of 

symmetry the resultant forces Txj and Tyi are doubled. 

3.4 Bottom Cable Attachment Forces 

The previous analysis for the computation of the top overhead cable forces is applicable to 
the bottom cable forces with the following minor modifications: 

(i) the axial cable stifthess for the bottom cables should be changed accordingly, and 
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(ii) the initial tension in the bottom cables is zero, and there is a significant amount of slack 
cable length which must be taken up before any tensile forces are transmitted to the 
attenuators. 

Condition (i) requires that the axial stiffhess of the bottom cable is doubled because of the 
double cable wrapping in the fence design (see Fig. 2a). 

Condition (ii) is accounted for by modifying the corresponding form of the equation (12) 

for the unstretched cable length by setting TOi = 0 and by increasing the unstretched length 
by a user-defined slack cable length. 

3.5 Contact Forces 

An accurate representation of the dynamic impact forces, stresses and strains generated 
during the fence-rock impact event would require a detailed non-linear dynamic impact 
analysis. This could be performed with a finite element calculation in which the rock and 
the attenuators would be idealized as deformable bodies. However, since only the energy 
transfer mechanism between the rock and the fence is of primary interest, a simple 
dynamic contact model can be used. The normal contact element model is comprised of a 
linear spring stiffuess and viscous damper, connected in parallel, that acts in the contact 
normal direction at the instantaneous point of contact, as shown in Fig. 6a. Behavior in the 
contact shear direction is defined by a shear contact element model consisting of a linear 
spring stiffuess and a slider that simulates a simple Coulomb dynamic friction model (see 
Fig. 6b). Note, that the contact normal and shear directions are defined by the boundary 
geometry of the body with the smoothest tangent plane at the point of contact. The normal 
and shear contact element model are active only when the discretized boundaries of the 
rock and the attenuator penetrate each other. 

The normal instantaneous contact force, Fn, is defined by: 

F = {kn ~n + c 8n for ~n ;;:: 0 
n 0 for Bn < 0 

(17) 

where, kn is the normal contact stifihess, c is the normal contact viscous damping 

coefficient, and ~ n is the normal penetration distance at the point of contact. 

The shear instantaneous contact force, Fs ' is given by: 

for kslBsl < ~ IFn i and Bn > 0 

for kslBsl ;;:: ~ IFni and Bn > 0 

for ~n < 0 
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where, ks is the shear contact stiffness, Os is the shear slip distance at the point of contact 
and J.1 is the dynamic coefficient offriction between the rock and the attenuator. 

Note: A suitable value of the nonnal contact stiffness kll is specified by the user by 
limiting the maximum penetration, or overlap, between the surfaces of the impacting two 
bodies to a predefined value. Typically, this maximum penetration is defined as a small 
fraction of the average body dimension of the contacting bodies. For example, this fraction 

is usually between 0.01 and 0.05. An estimate of kll can simply be determined with an 
approximate energy calculation for the impacting bodies. 

For fence-rock impact studies the normal contact stiffhess kll should be determined by 
prescribing an approximate maximum overlap between the rock and attenuator elements. 
A facility for this has been included in the DEM computer model and is mentioned in 
Appendix II of this report. In the analyses performed in Appendix I for double layer fences 
an overlap of six inches was prescribed. 

3.6 Restitution Model 

In the discrete element numerical model, the energy loss due to impact is simulated with a 
viscous damper which acts at the point of impact, P, in the contact normal direction. The 

normal viscous force, Fn , in this damper, which is the second term in the normal contact 
force equation (17), is given by: 

(19) 

where On is the normal component of the relative velocity of the fence with respect to the 
rock at the point of contact, and is defined by: 

(20) 

Note, that ii is the unit outward contact nonnal direction at the point of impact, P, and Vpc 

and v PC are the velocities of the fence and the rock during the impact, respectively, and c is 
the normal contact viscous damping coefficient as defined in equation (17). 

In a dynamic impact between two bodies, the energy loss can be approximately modeled 
with a simple restitution model which requires e, the coefficient of restitution, to be known 
a priori via experimental data. Due to lack of available quantitative data concerning the 
impact energy losses during a fence-rock impact situation this simple model is appropriate. 
However, in order to apply the normal contact force law, equation (17), a relationship 
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between the viscous damping coefficient c, and the coefficient of restitution e, is required. 
For this purpose, a simple approximate relationship between the viscous damping 
coefficient, c, and the coefficient of restitution, e, can be derived by assuming that the rock 

and the attenuator are approximated as two particles of mass mr and mc' respectively. 
This results in the relationship: 

where kn is the normal contact stiffuess at P, the point of impact. 

It should be noted that the use of equation (21) is only approximate when applied to a 
non-central impact between a spherical rock and a cylindrical attenuator. Some numerical 
experimentation, therefore, is usually required to obtain the precise value of the viscous 
damping coefficient which corresponds to a specified value of the coefficient of restitution. 

3.7 Time Stepping Algorithm 

The above equations of motion. (2), (3) and (4), which describe; (i) the translational rigid 
body motion of the center of mass for each attenuator element, and, (ii) the rotational 
motion of each element, can be written in the generalized form: 

(22) 

where q~ is a generalized coordinate, M~ is a generalized mass, and I\k is a generalized 
loading vector. 

For a planar rigid body element, the generalized variables are identified as follows: 

(i) the generalized coordinates, q:, q~, are the element centroid Cartesian coordinates Xi' 

Yi' and q~ is the angular coordinate 9i, of the elements longitudinal or local x-axis, 

(ii) the generalized masses, M:, M; are the element mass mj , 

and Mi is the elements polar mass moment of inertia I j , and 

(iii) the generalized loading vector, 1\1, 1\2, are the x,y- components of applied forces 
acting at the element centroid and 

1\3 is the applied moment acting at the element centroid. 

The solution of the above decoupled dynamic element equations for large rigid body 
motions is obtained with an updated Lagrangian algorithm. This procedure employs 
incremental updating of the element centroid kinematic variables. Time integration of the 
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dynamic element equations is then perfonned with an explicit central difference time 
stepping scheme. 

The central difference time step update scheme for the generic dynamic equilibrium 

equation (22), from time t n to tn + .dt, is perfonned in two parts: 

(i) a generalized velocity update for the linear and angular velocity of the center of mass of 

all the elements, where the generalized velocities, 4f, for a typical element are updated by: 

(23) 

where the pre-superscripts n-1I2, n, and n+ 1/2 indicate quantities defined at times 
tn -.dt 12, tn, and tn + At 12, respectively, and 

(ii) a generalized position update for the coordinates of the center of mass and the local 
longitudinal axis of all the elements, where the generalized coordinate for a typical 

element, q~, is updated by: 

(24) 

The pre-superscripts n and n+ 1 indicate quantities defined at times t n and t n + At. 

The numerical stability criteria of this time stepping scheme depends on the maximum 

frequency of the combined discrete element system, Olmax' This gives a time step limitation 
constraint of the form: 

(25) 

where A tmax is the maximum allowable time step. This criteria can be applied simply with 
the largest natural frequency of any rigid attenuator element within the fence structure 

which is an approximate upper bound of Olmax' This approximate procedure avoids a 
costly eigenvalue analysis of the whole discrete element fence idealization. 

4.0 DESCRIPTION OF THE DEM SOFfW ARE MODULES 

The DEM dynamic fence-rock analysis software consists of three major modules: 
(i) the computational DEM module (FENCE), 
(ii)the geometrical graphics snapshot and animation module (GPLOT), and 
(iii)the time history graphics module (HPLOT). 
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In the DEM computational module. FENCE. the input data contains the following 
parameters: 

(i) fence and rock geometry and mass properties. 
(ii) material model and properties for the fence cables. 
(iii) impact and restitution parameters between the fence and the rock, 
(iv) the initial rock velocity prior to impact. and 
(v) control parameters which descnbe the type and time intervals of the computed results. 

This input data is contained in a data file with a user-specified name appended with the 
extension .DAT. 

The computed results are written to three different output data files with a user-specified 
name appended with the extensions .OUT, .HST, and .GEO, respectively. These output 
data files are called the printout file, the time history file, and the geometry file, 
respectively. 

The printout file is used directly to verify the input data and for checking purposes by the 
user. The time history and the geometry results data files are input data for the graphical 
post-processing modules HPLOT and GPLOT, respectively. 

The HPLOT graphics module interactively displays time history plots and produces 
postscript graphics output. Typical time history data plots include; (i) centroidal 
kinematics quantities such as position and velocity components for the rock and the 
attenuator colunms, and (ii) forces in the overhead and bottom cable segments, and the 
attenuator hanger connections. 

The GPLOT graphics module is used to display the following geometrical data for the 
fence-rock system; (i) single snapshots of the fence-rock geometry at prescribed times 
during the impact, or (ii) animation of the fence-rock motion throughout the impact. 
Postscript graphics output of the single geometry snapshots can also be produced by 
GPLOT. 

The hard copy graphics output from HPLOT and GPLOT have been used to illustrate the 
computational results obtained from the numerical analyses presented in the subsequent 
sections in this paper. It is the opinion of the authors that without graphical output these 
analyses would be very difficult to perform and interpret effectively. 

5.0 VALIDATION PROBLEMS 

The following example problems are presented to validate the above described discrete 
element computational procedure. These calculations illustrate that this numerical 
approach accurately models; (i) dynamic impact phenomena between rigid bodies, (ii) 

15 



large dynamic rigid body motion and translation, and (iii) large elastic deformations of the 
flexible cables attached to the bodies. 

The first example problem consists of a particle of mass m, initially at rest, attached to two 
unstretched elastic cables of stiffuess, k, and length, £ , in a horizontal plane (note that the 
gravitational effects are ignored), being impacted by a particle of mass M with an initial 
velocity Vo (see Fig. 7). The coefficient of restitution for this impact is defined bye. 

The data used for this analysis are as follows: 

k = 4 N/m, f = 10 m, m = 1 kg, M = 2 kg, e = 0.5, and Vo = 2 mls. 

The analytical solution for this problem is described by: 

(26) 

Where vIis the velocity of the particle of mass m, immediately after the impact, and 

(27) 

where v( a) is the velocity of the particle of mass m after the impact at the instant when 
the cables subtend an angle a with respect to their initial directions. 

The time histories of the x-component of velocity for the particles of masses m and M are 
shown in Fig. 8. The distance moved by the particle of mass m, after its velocity decreases 
to zero is computed as 3.826 m and corresponds to an angle a = 0.365 radians. This is in 
good agreement with the exact result which can be obtained from equation (27). It should 
also be noted that the velocity immediately after impact is 1.997 mis, which compares 
closely with the analytical value of 2.0 mis, predicted by equation (26). This result 
validates the viscous damper - restitution coefficient equation stated in equation (21), 
previously. 

The second validation problem consists of a single cylindrical attenuator being impacted 
by a spherical rock moving with an initial horizontal velocity vo. The cylindrical 
attenuator is pin-jointed at its top, and the line of impact is through the center of mass of 
the attenuator, (see Fig. 9). The superquadric geometrical representation of two­
dimensional outline shapes of the spherical rock and the cylindrical attenuators in the 
subsequent analyses are defined as follows: 
(i) the rock geometry is defined by a circular boundary shape with twelve equally spaced 
nodes, and 
(ii) the fence attenuator geometry is defined by a boundary shape with four nodes at the 
comers of the rectangular boundary. 
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The attenuators mass, moment of inertia with respect to the center of mass, vertical height 
and radius are defined by m, !(J, l and r, respectively. The mass of the rock is M, and the 
coefficient of restitution is e. The data for this analysis are given as: 

m = 14.92 slugs, l = 8 ft, IG = 85.42 slug-ft2, r = 1.2 ft, 
M = 37.23 slugs, Vo = 5 ft/s and e = 0.5. 

The analytical solution for this problem is given by: 

(28) 

where VI is the speed of the center of mass of the attenuator immediately after the impact. 
Note: the corresponding angular velocity is determined by: 

(29) 

The subsequent angular velocity of the center of mass of the attenuator, 0)(0), when the 
angle of the longitudinal axis of the attenuator with respect to the vertical direction is 0, is 
defined by: 

0)2(e) = m~ + 2mgl(cose-I)/(Ia +ml2 14) (30) 

The numerical results of the dynamic impact simulation are given in Figs. 10 and 11. Fig. 
10 shows snapshots of the geometry of the rock and the attenuator during the dynamic 
impact simulation. A time history of the horizontal component of velocity of the rock and 
the attenuator during and after the impact is shown in Fig. 11. The computed horizontal 
components of the rock and the attenuator immediately after the impact are 2.36 fils and 
4.85 fils respectively, which are in close agreement with the exact solution. The maximum 
angle of rotation of the attenuator after the impact was computed to be 0.503 radians 
which agrees with the analytical value to three significant figures. This analytical result can 
be computed from equation (30). 

6.0 ROCK IMPACT STIJDIES 

6.1 Model Dimensions and Properties 

A full size fence model is used to study the dynamic response of the fence due to 
impacting rocks. A similar full size prototype fence has been built by the Colorado 
Department of Highways (CDOH). Limited experimental data, which is mainly qualitative, 
has been obtained from this fence structure by the CDOH. Dimensions and material 
properties for this numerical idealization are described in Fig. 2 and Table 1. In the present 
computer model two idealized material models for the cable behavior have been 
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implemented. The first is a simple linear elastic mode~ and the second is a perfect elastic­
plastic model. These models were selected, since more precise cable data for the 
prototype fence was not available. It should be noted that more realistic material models 
for the cable can be readily inserted into the present algorithm. For example, a 
constititutive model with time dependent stiffuess properties which accounts for cable life 
[7], could be implemented. 

6.2 Simulation Results 

A series of analyses were performed which included the following possible combinations: 
(i) two rock sizes, (ii) the two material models, (iii) different rock impact heights, (iv) 
different bottom cable slack conditions, and (v) no bottom cable. Each computer run 
required approximately 100,000 time steps with M = 2 x 10-6 seconds. Each analysis 
required about 15 minutes, using an Intel CPU based 80486, 33 MHz microcomputer. 

Tables 2 and 3 summarize the computed results for the 600 lb. rock, and the 1200 lb. 
rock, respectively. The calculations include the maximum forces in the fence cable 
segments and the attenuator hanger connections, and the final rock velocities after the 
impact. The results quoted are for analyses performed with; (i) the linear elastic cable 
model, and (ii) the perfect elastic-plastic cable model. Note, that the results for the perfect 
elastic-plastic model are quoted in parenthesis in Tables 2 and 3. A bottom cable slack of 
0.5 ft. is assumed. The first column in Table 2 indicates the vertical variation of the rock 
impact position with respect to the attenuator centroid. 

Figures 12 through 15 show detailed geometry snapshots and time history plots for an 
impact situation, when the rock impact location coincides with the centroid of the 
attenuator. Figs. 12 and 13 show snapshots of the fence-rock geometry during the impact 
for the 600 lb rock, with a bottom cable (0.5 ft slack), and without bottom cable, 
respectively. Figures 14 and 15 illustrate time histories for the primary design parameters, 
namely, attachment force, forces in top and bottom cable, and the rock horizontal velocity. 
These results were computed for both rock sizes and cable material models. The 
computed results presented in Tables 2 and 3, and the time history data in Figs. 14 and 15 
are discussed below. 

A series of further analyses were performed for 600 lb and 1200 lb rock impacts against a 
single layer fence structure. In these simulations the bottom fence cable was analyzed 
under the two following conditions: (i) 0.0 ft. slack, and (ii) 0.25 ft. slack The maximum 
forces in the top overhead cable and top joint at the central attenuator are quoted in 
Tables 4 and 5. From the results of the analyses it was concluded that different slack 
bottom cable lengths cause only minor differences in the overall impact behavior and 
mechanical response of the fence. For example in the simulations with slack cables short 
duration force spikes in the fence impact force time histories were noted. 

6.3 Observations 

18 



From the computational results of the analyses which are summarized in Table 2 and 3, the 
following general observations can be made: (i) for a fence with a bottom cable: elastic 
cable forces tend to reach a maximum when the impact takes place near, and above, the 
attenuator centroid, and (ii) for a fence without a bottom cable the elastic cable forces 
tend to increase with impact height. In both fences, with or without bottom cables it is 
observed that the rock post-impact velocity decreases with increasing impact height. 

The time histories presented in Figs. 14 and 15 give more detailed insight to cable 
behavior and rock velocity characteristics for a particular impact. Relevant observations 
are summarized as follows: 

(i) There exists a significant difference in the fence cable forces computed, assuming 
elastic and perfect elastic-plastic cable behavior, respectively. It is noted that the 
elastic-plastic material model predicts minor yielding which "cushions the impact", 
and reduces the unrealistically high impact peak forces in the cables obtained by the 
elastic cable model (see Figs. 14b, and 14t). 

(ii) The slack in the bottom cable produces force spikes introducing further impacts to the 
attenuators. Slack in the bottom cable causes a delayed sequence of impulsive cable 
forces which act between adjacent attenuators This phenomenon leads to force 
spikes in the cable forces (see Figs. 14c, and 14g). 

(iii) The fence with a bottom cable produces multiple impacts between the attenuator and 
the rock, thus, reducing the rock velocity gradually in stages. 

(iv) Minor plastification takes place in the top overhead cable mostly during the first 
impact between the rock and the attenuator (see Figs. 14i and lSi). 

7.0 CONCLUDING REMARKS 

A powerful numerical modeling tool has been developed for the non-linear dynamic 
impact modeling of a flexible rockfall prevention fence. An approximate three-dimensional 
impact analysis has been perfonned in an effective manner with a new two-dimensional 
DEM model. In this model the fence and rock kinematics are assumed to be planar, 
whereas the cable stifihess effects are modeled in a three-dimensional manner. Nonlinear 
cable effects have also been included. 

The DEM simulation procedure has been mathematically validated and applied to a series 
of full scale fence-rock impacts with varying design parameters. The numerical results for 
this series of impact simulations predict the maximum forces generated within the fence 
cables during a rock impact event. Corresponding predictions of post impact rock 
velocities have also been made. These initial calculations presented here illustrate the ease 
with which a designer can evaluate the effects of varying different fence design parameters 
on the fence capacity. It is hoped that further use of this numerical model, in conjunction 
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with additional experimental data, will enable the design engineer to improve upon the 
current methodology employed in the design of flexible rockfall prevention fences. 
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Top Cable Span: 
Top Cable Sag: 
Modulus of Elasticity: 
Top Cable Area: 
Bottom Cable Area: 
Tire Height: 
Attenuator Height: 
Attenuator Width: 
Attenuator unit Weight: 
Attachment Length: 
Rock unit Weight: 
Rock Weight: 

Rock Impact Velocity: 
Coefficient of Restitution: 

L = 55 ft 
f = 5.5 ft 
E = 20,000 ksi 
Atop = 1.076 in2 

~t = 0.25 in2 (doubly wrapped) 
t = 8 in 
12t = 8 ft 
w = 2.5 ft 
'Yatt = 12.2 lbs/ft3 

d = 2.5 ft 
'Yr~k = 165 lbs/ft3 
600 lbs (case (i» 
1200 lbs (case (ii» 
Vx = 65 ft/s (horizontal) 
e = 0.4 

Table 1. Model Dimensions and Properties 
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FORCE IN 
Yc: TOP JOINT 

104 [Ibs) 

-3.0 3.87 
(3.95) 

-1.5 9.02 
(5.59) 

0.0 8.78 
(5.83) 

1.5 6.99 
(5.89) 

3.0 6.64 
(5.78). 

-3.0 2.76 

-1.5 1.02 

0.0 2.16 

1.5 7.03 
(5.91) 

3.0 6.77 
(5.83) 

FORCE IN 
TOP CABLE 

WITH BOTIOM 
CABLE NO SLACK 

loS [Ibs) 

WITH BOTIOM 
CABLE~LACK = 0.50 FT. 

1.62 
.(1.64) 

2.62 
(2.00) 
2.79 

(2.00) 
2.39 

(2.00) 

231 
(2.00) 

NO BOTl'OM 
CABLE 

1.29 

0.67 

1.10 

2.40 
(2.GO) 

2.34 
(2.00) 

FORCE IN Vx -ROCK 
BOTIOM CABLE AFTER IMPACI' 

105 11bs) [ft/sec] 

1.41 -4.6 
(tOO) (-5.7) 

LSS -5.6 
(1.00) (-2.6) 
LSS -1.6 

(1.00) . (-6.9) 
1.51 -1.1 

(1.00) (-2.5) 
0.89 15.5 

(0.94) (8.2) 

-43.7 

-31.7 

-23.7 

-20.8 
(-21.9) 

-1.7 
(-7.5) 

Table 2. Maximum Forces for a 600 lb Rock Impacting a Fence with: (a) with Bottom 
Cable 0.5 ft. Slack, and (b) without a Bottom Cable 

22 



FORCE IN 
Yc TOP JOlNT 

104 [Ibs] 

-3.0 7.46 
(5.95) 

-1.5 10.6 
(6.19) 

0.0 13-4 
(6.26) 

1.5 9.77 
(6.92) 

3.0 8.18 
(6.85) 

-3.0 3.17 

-1.5 1.38 

0.0 3.15 

1.5 9.21 
(6.4) 

3.0 9.18 
(6.28) 

FORCE IN 
TOP CABLE 

WImBOTfOM 
CABLE NO SLACK 

105 llbs) 
.-

- . . 
WITH BOTfOM 

CABLE,sLACK - 050 FT 
2.5 

(2.00) 

3.16 
(2.00) 

3.7 
(2.00) 
2.99 

(2.00) 
2.68 

(2.00) 

NOBOTI'OM' 
cABLE 
. 1.42 

0.82 

1.41 

2.89 
(2.00) 

2.87 
(2.00) 

FORCE IN Vx -ROCK 
BOTTOM CABLE AFTER IMPACT 

105 llbs] (ft/sec) 

1.8 -12.9 
(1,00) (-21.1) 

D8 -11.2 
(1.00) (-14.2) 
1.94 -9.7 

(1.00) (-10.8) 
2.18 -0.5 

(1.00) (-7.2) 
1.47 4.8 

(1.00) (1.3) 

-51.7 

-47.0 

-38.6 

-:35.1 
(-34.1) 
-16.1 

(-17.8) 

Table 3. Maximum Forces for a 1200 lb Rock Impacting a Fence with: (a) with Bottom 
Cable 0.5 ft. Slack, and (b) without a Bottom Cable 
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FORCE IN 
Yc TOP JOINT 

104 lIbs] 

-3.0 4.15 
(3.61) 

-1.5 7.97 
(5.08) 

0.0 3.87 
(2.69) 

1.5 7.55 
(5.89) 

3.0 6.54 
(5.75) 

-3.0 5.75 
(4.94) 

-1.5 7.32 
(5.77) 

0.0 10.1 
(5.34) 

1.5 6.99 
(5.89) 

3.0 6.64 
(5.78) 

FORCE IN 
TOP CABLE 

WITH BOTTOM 
CABLE NO SLACK 

105 llbs] 

1.69 
(1.54) 
2.61 

(1.94) 
1.62 

(1.27) 
2.52 

(2.00) 
2.29 

(2.00) 

WITH BOTTOM 
CABLE SLACK = 0 25 FT . . 

2.10 
(1.90) 
2.47 

(2.00) 
3.06 

(2.00) 
2.39 

(2.00) 
2.31 

(2.00) 

FORCE IN Vx -ROCK 
BOTTOM CABLE AFTER IMPACT 

105 llbs] [ft/sec) 

1.29 -5.1 
(1.00) (-5.0) 
1.77 -3.1 

(1.00) (-1.9) 
2.09 0.7 

(1.00) (-2.3) 
1.64 2.5 

(1.00) (1. 71) 
1.09 7.1 

(1.00) (6.4) 

1.46 ~.4 

(1.00) (-4.2) 
1.39 ~.6 

(1.00) (-2.3) 
1.92 -1.2 

(1.00) (-7.2) 
1.2 -1.6 

(U)O) (-3.7) 
0.99 14.9 

(0.89) (5.5) 

Table 4. Maximum Forces for a 600 Ib Rock Impacting a Fence with: (a) with Bottom 
Cable 0.0 ft. Slack, and (b) (a) with Bottom Cable 0.25 ft. Slack. 
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FORCE IN 
Yc TOP JOINT 

104 llbs] 

-3.0 6.4 
(4.84) 

-1.S 1I.S 
-<S.82) 

0.0 8.01 
(3.87) 

1.5 11.1 
(6.68) 

3.0 8.02 
(6.33) 

-3.0 10.4 
(6.25) 

-1.5 9.46 
(6.24) 

0.0 13.0 
(5.69) 

1.5 10.2 
(6.68) 

3.0 8.18 
(6.52) 

FORCE IN 
TOP CABLE 

WITH BOTTOM 
CABLE NO SLACK 

105 [Ibs] 

2.26 
(1.87) 
3.33 

(2.00) 
2.62 

(1 .68) 
3.26 

(2.00) 
2.62 

(2.00) 

WITH BOTTOM 
CABLE SLACK = 0 25 FT • . 

3.13 
(2.00) 
2.93 

(2.00) 
3.61 

(2.00) 

3.08 
(2.00) 
2.66 

(2.00) 

FORCE IN Vx -ROCK 
BOTTOM CABLE AFl'ER IMPACT 

105 [ft/sec] 

1.8 -6.9 
(1.00) (-8.4) 

2.3 -S.9 
(l.00) (-6.7) 
2.6S -2.1 

(1.00) (-4.2) 
2.03 -0.9 

(1.00) (1.6) 
l.5S 10.0 

(1.00) (6.4) 

1.93 -14.1 
(1.00) (-17.9) 

1.71 -6.6 
(1.00) (-10.6) 

2.51 -12.1 
(1.00) (-7.7) 
1.87 -1.1 

(2.00) (-5.4) 
1.76 9.2 

(2.00) (4.7) 

Table 5. Maximum Forces for a 1200 lb Rock Impacting a Fence with: (a) with Bottom 
Cable 0.0 ft. Slack, and (b) (a) with Bottom Cable 0.25 ft. Slack. 
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Fig. 1 Fence structure - Three-Dimensional View 
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Fiq. 3 Attenuator Numbering system 
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Fiq. 6 

Attenuator 

(a) 

ks 
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contact Kodel: (a) "Normal" contact Element, 
(b) "Shear" contact Element 
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(c) post-xmpact Velocities 
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APPENDIX I - Modeling of Single and Double Layered Flexible Rockfall 
Prevention Fences 

The following technical paper describes the additional work required to modify the 
FENCE computer model for the analysis of flexible rockfall prevention fences 
constructed with two layers of attenuator columns. This publication also illustrates the 
capability of the FENCE model to simulate multiple rocks impacting a fence structure. 
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Abstract 

A discrete element model for simulating the dynamic impact response of a highway rockfall prevention 
barrier system. is descnDed. This work is an extension of previous work for modeling single layer feoce 
barriers subject to single rock impads The DEM technique employs two-dimensiooal modeling 
techniques to develop an efficient algorithm for a three-dimensional nonlinear dynamic structaral system. 
The approach developed beR:iu is suitable for modeling multi-layered flexible bmier systems impacted by 
single or multiple rocks. The resulting software can be used on microcomputers and is snitah1c for 
sensitivity studies and design calculations. 

INTRODUCTION 

Roc1d3l1 prevention highway barrier systems consisting of flexible fence structures are increasingly being 
used to minimize the risk of rockfall related automobile accidents or road closures. These barriers are 
placed near highways in mountainous regions wherever there is a significant poteDtia.l rockfall hazard. 

Traditionally, most rockfall prevention highway barrier systems are rigid or semi rigid structures such as 
fences or walls. Rigid barrier systems are usually constructed from a combination ofwood, metal grids 
and low cost geo-materials which are often available onsite. Because these barriers are designed to 
completely stop falling rocks they are usually J3irly massive structures requiring a large amount of 
material and significant constmction. Alternative rockfall prevention barrier systems are catchment pits or 
trenches which must be excavated or blasted so that they are deep enough to catch the rocks. 

More recently, highway engineers have developed various flexible barrier systems which overcome many 
of the problems associated with rigid structural barriers or pits. These fieXJ."le systems are much smaller 
and lightweight in construction, and are designed so that minor damage to the barrier can easily be 
repaired. It should be noted that minor damage should not significantly reduce the effectiveness of the 
barrier. The basic design com:ept of these fieX1"le barrier systems is based upon the notion that the 
fieXJ."le barrier does not have to completely stop the falling rock, but just reduce the kinetic energy of the 
falling rock to an acceptable level after impacting the barrier. The kinetic energy of the rock after 
impacting the barrier must be such that the rock comes to rest harmlessly in a rolling zone. The concept of 
reducing the falling rocks kinetic energy is usually termed the principle of rockfall attenuation. 

In a flexible barrier system the rock velocity is slowed down by traDsferring some of its kinetic energy into 
the fleXJ."le barrier system in the form of impact energy losses, inelastic deformational energy and an 
increase of kinetic energy within the fleX1"le barrier. Typical design considemtions for a fleX1"le barrier 
system are: (i) the accurate prediction of maximum impact forces within the flexIble barrier system, and 
(ii) an estimate of the corresponding kinetic energy loss of the falling rocks. 
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In order to address these design issues full-scale testing of prototype flexible fences and barrier systems 
bas been peIformed by the Colorado Department of Highways (CDOH). This experimental work bas been 
successful in determining the oveI3ll performance of typical flexible barrier systems, estimating the basic 
design parameters, and modeling barrier failure mechanisms. The major limitations of the data obtained 
from this test program are: (i) it is difficult to scale the experimental data for much larger or smaller 
structures, (ii) limited quantitative information of falling rock kinetic energy losses, and (ill) limited 
applicability to modifications in the barriers structural design. and (iv) most of the data is qualitative . 

Recently, a numerical model based upon a combination of the discrete element methodology and a 
conventional dynamic structural model has been developed to simulate the dynamic response of a 
particular fiex1ble rockfaIl prevention barrier system [1]. This barrier type coDSists of banging columnar 
attenuator masses assembled from used truck tires and rims, threaded onto a steel rod, which are 
suspended from a horizontal overhead wire cable and connected by a bottom cable. Fig. 1 (a) illustrates a 
typical two fence layer flex10le barrier system. The bottom cable connection is installed to increase the 
kinetic energy losses of the impacting rocks. This increase occurs because the combined mass of all 
attenuators are more tightly linked together. It should be noted that any slack in the bottom cable results 
in a staggered motion of the attenuators. When a rock hits the barrier the hanging columns begin to move 
in a pendulum-like motion. The sizes of the most likely impading rocks mnge between 500 lbs to 1500 
lbs. Corresponding impact rock velocities vaJ.Y between 50 and 70 ftls. It should be noted that larger 
impacting rocks that are over 2000 lbs in weight are likely to cause significant feDce mUDage, and exceed 
the barrier system capacity. 

The numerical model descnOed here is a technique that can be used in conjunction with experimental 
methods to estimate the barrier capacity. For example, the dynamic impact calculations can study the 
effects of different rock sizes and rock velocities on particular barrier configwations. Barrier response 
parameters of particular importance include; (i) the forces in the baDger connection and the overhead and 
bottom cables, and (ii) the decrease in rock velocity due to impact. 

The numerical procedure developed is based upon the DEM. This procedure solves the nonlinear coupled 
dynamic equations of motion for the idealized barrier structnre and the impacting rock. The DEM model 
assumes that the barrier structnre can be idealized as a system of connected rigid bodies, and the rock as 
an impacting rigid body. The dynamic barrier-rock impact conditions are modeled with a penalqr 
formulation and an automatic contact detection algorithm. This numerical procedure utilizes an explicit 
time stepping scheme to solve the discretized equations ofmotion, see [I] for further details. 

The work presented in this paper is an extension of the analysis technique and associated computer 
software developed by Mustoe and Huttlemaier [1]. The new developments reported here include: (i) the 
modeling of rockfall events consisting of multiple rock impacts, and (ii) dynamic analysis of flexible 
barrier systems consisting of multiple fence structures. 

BARRIER DEM MODEL 

The rockfall barrier discrete element algorithm includes the following features: 

(i) an automatic contact detection scheme which automatically recognizes new contacts as the simulation 
progresses, and updates the contact topology appropriately, 
(Ii) a contact force model that determines the forces acting between interacting fence attenuator columns, 
impacting rocks and connecting fence cables, and 
(ill) a time integration scheme to solve the governing equations of motion of the fence attenuator columns 
and impacting rocks, that allows for finite displacement and rotation. 
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The modeling aspects and assumptions of the discrete element model, namely the rigid body dynamics of 
the barrier system and rock, the cable behavior, the rockIattenuator impact interaction model and the 
numerical integration of the dynamic equations of motion are discussed below: 

• The impacting rocks and fence attenuator columns are modeled as three-dimensional rigid spherical 
and cylindrical bodies respectively, that are confined to move in a planar manner within the x,y plane 
(see Fig 1 (b». 

• A superquadric representation [21 of the two-dimensional boundaries of the impacting rocks and 
fence attenuator columns is employed. This kind of geometrical modeling has been used previously by 
Williams and Pentland [3] in DEM analysis. 

• Multiple fence layers within the flexible barrier system interact with each other because of the contact 
between adjacent attenuator columns in different fence layers. This phenomena occurs because of the 
planar kinematics of the attenuator columns. 

• Multiple inteIacting rocks are assoDJCd to hit the central localized portion of the barrier that is limited 
to one or two attenuators in the center of the barrier. This assumption is justified since the diameter of 
most impacting rocks is less the diameter olthe cylindrical attcmnator columns. 

• The connecting cable segments between neighboring attcnuators in the same reru:e layer are modeled 
as elastic or eJasto.plastic massless elements that only transmit tensile forces. 

• Contact forces are generated from contact sti1rness and damping elements which act between the 
central attenuator(s) and the impacting rocks or between adjacent attenuator columns in di1rerent 
fence layers. These forces are determined from the current penetration or overlap distance and the 
relative velocities of the bodies in contact at the common point of contact. N~ that contactfoRx:s 
between adjacent attenuator columns in the same fence layer are neglected, siDce they are small 
compared with the impact fcm:c between the a:Dtml attemurtM and the impacting rocks. 

BARRIER. MODEL EQUATIONS 

Equations of Motion 

The equations of motion for the ith fence attenuator within a fence layer modeled as a rigid body, 
assuming planar dynamic motion confined in the x-y plane are given by: 

miXi = ~Fxi (I) 

md;i = ~Fyi (2) 

Ii8i = ~Mi (3) 

for i = 1,2, ... N, where N. is the total number offence attenuators, and N is defined. as N = (N. + 1)12. 
This definition ofN is because of the impacting rock(s) are assumed to hit the central fence attenautor 
column. See Fig. 1 (c) for details of the attenuator DEM idealization. The corresponding resultant loading 
terms in equations (1),(2) and (3), are: 

(4) 

~F.. = or. + B . + P.. - m· g Y1 ~ Y1 Y1 I (5) 
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XM j = Bxi bcos9j + Byi bsin9j + Txi acos9j + ~ asin9 j 

+ Pxi AYi + Pyi AXi 
(6) 

where Txi and Tyi are the global x- and Y- components oftension forces induced at the top overhead cable 

connection, Exi and Byi are the global x- and Y- components of tension forces induced at the bottom 

cable connection, P xi and P yi are the global x- and y- components of the contact forces generated. by the 

rock attenuator impact, and g is the gravitational constant. For the ith attenuator the following parameteIS 

are defined: mj is the mass, I i is the mass polar moment of inertia with respect to the centroid, Xi and Y i 

are the global centroidal coordinates, and e i is an angular coordinate defining the axial direction of the 

attenuator. The distances of the top and bottom cable c:onDeCCious with respect to the attenuator centroid 
are defined by a and b, respectively. The global x- and y- coordinates of the point of contact of the rock 

with the attennator measured with respect to the attenuator ceDtroid are defined by A Xi and 4 Y i' Note. 
that ifN is even, the mass and moment of inertia terms in equations (1) through (3), for i=l, are doubled. 
This modification is required because of the assumed symmetrical impact geomeuy whidl implies that the 
two central attenuatoIS are hit simultaneously. 

The corresponding equations of motion for impacting rocks are similar to those developed above for a 
fence attenuator, and are not repeated for sake ofbrevity. Note, that the cable ftm:e terms in the equations 
of motion for the rocks are zero. 

Cable Attachment Forces 

The top and bottom cable attachment segment forces are computed using simple equivalent axial cable 
stiffness coefficients and determining the current change in cable segment lengths from their original 
initial segment lengths. It is important to note that the initial tension in the cables must be accounted for 
in these force calculations. For further details, see Mustoe and Huttlemaier [1). When modeling the slack 
in the bottom cables it should be noted that a significant amount of slack cable length must be taken up 
before any tensile forces are transmitted to the attenuatoIS. 

Interaction Force Laws 

A simple dynamic contact model is used, since the energy transfer mechanism between the rock and the 
fence is of primaIy interest. The normal contact element model is comprised of a linear spring stiffness 
and viscous damper, connected in parallel, that acts in the contact normal direction at the in..¢mtjlneous 
point of contact. Behavior in the contact shear direction is defined by a shear contact element model 
consisting of a linear spring stiffness and a slider that simulates a simple Coulomb dynamic friction 
model. Note, that the contact normal and shear directions are defined by the boundary geometry of the 
body with the smoothest tangent plane at the point of contact. The normal and shear contact element 
model are active only when the discretized boundaries of the rock and the attenuator penetrate each other. 

The nOnnal instantaneous contact force. Fn. is defined by: 

(7) 
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where, ka is the normal contact stiffness, c is the normal contact viscous damping coefficient, and aa is 
the normal penetration distance at the point of contact 

The shear instantaneous contact force. Fs ' is given by: 

kslosl < ~ IFal and OD > 0 

kslosl ~ ~ IFal and OD > 0 
Sa <0 

(8) 

where, ks is the shear contact stiffness, 8s is the shear slip distance at the point of contact and J1 is the 
dynamic coefficient of friction between the rock and the attennatOf. 

Note: A suitable value of the normal contact stiffness ka is specified by the user by limiting the 
maximum penetration, or overlap, between the surfaces of the impacting two bodies to a predefined value. 
Typically, this maximum penetIaliOD is ddined as a small fraction of the avernge body dimension of the 

contacting bodies. An estimate of ka can simply be deteIIDined with an approximate energy c:aladllfjon 
for the two impacting bodies during an elastic collision. This approximate c:alcuIation assumes that the 

bodies are approximated as two particles of mass D1r and mr, respectively. Using the above approach an 

estimate for ka is given by: 

(9) 

where v_and A_ are the estimated maximum normal relative speed and overlap distance at the 
contact point respectively during the impact 

Restitution Model 

In the discrete element numeric:al model, the energy loss due to impact is simulated with a viscous damper 
which acts at the point of impact, P, in the contact normal direction. The normal viscous forte in this 
damper, which is the second term in the normal contact force equation (1), is given by: 

(10) 

where a a is the normal component of the relative velocity of the fence with respect to the rock at the 
point of contact, and is defined by: 

~ =(v -v )·a a Pf Pr (11) 

Note, that n is the unit outward contact normal direction at the point of impact, p. and v Pf and v Pf are 
the velocities oftbe fence and the rock during the impact,-respectively. and c is the normal contact viscous 
damping coefficient as defined in equation (7). 
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In a dynamic impact between two bodies, the energy loss can be approximately modeled with a simple 
restitution model that requires e, the coefficient of restitution, to be known apriori via experimental data. 
Due to lack of available quantitative data concerning the impact energy losses during a barrier-rock 
impact situation this simple model is appropriate. However, in order to apply the normal contact force 
law, equation (7), a relationship between the viscous damping coefficient C, and the coefficient of 
restitution e, is required. For this pwpose. a simple approximate relationship between the viscous 
damping coefficient, c, and the coefficient of restitution, e, can be derived by assuming that the rock and 

the attenuator are approximated as two particles of mass mr . and mr, respectively. This results in the 
relationsbip: 

(12) 

where kll is the normal contact stiffness at P, the point of impact. 

It should be noted that the usc of equation (12) is only approximate when applied to a non-centtal impact 
between a spherical rock and a cylindrical attenmltor. Some numerical experimentation, therefore, is 
usuaDy required to obtain the precise value of the viscous damping coefficient which corresponds to a 
specified value of the coefficient of restitution. 

Contact Detection Algorithm. 

The multiple contacts which occur between the rocks and the fence attennator columns are detfrted 
automatically with an algorithm which performs the followiDg tinx:tions: 
(i) At the beginning of the analysis the problem space is subdivided iDto a grid ofJedaDgular cells or 
subregions. The dimensions of these cells is defined to be a function oCtile av=age dimension of the 
bodies within the problem and selected to minimize computational effort. 
(ii) Simple geometrical checks are carried out to determine the cell locations for each body in the problem 
throughout the simulation as the bodies move. , 
(ill) At eveIY time step local body-to-body contact checkjng is peIformed on a cell by cell manner for cells 
within the problem space. This algorithm is similar to that developed by Preece and Taylor [4], and the 
method employed by Zhang [5] for modeling particle flow problems. 

Explicit Time SteppiDg Scheme 

The time stepping scheme employed in the DEM procedure is the standard explicit central difference 
method [1], applied to the equations of motions defined by equations (1) through (3). This leads to three 
sets of generalized velocity and displacement update formulas for the centroidal coordinates of a body. 
Large motion of the bodies (the fence attenuatoIs and rocks) is simulated with suocessive incIememal 
updating of the bodies current coordinates. 

DEM IMPACT ANALYSES 

Model DimeosioDS and Properties 

A full size barrier model is used to study the dynamic response of the barrier system due to impacting 
rocks. A similar full size prototype barrier system bas been built by the ColoIado Department of Highways 
(CDOH). Limited experimental data, which is mainly qualitative, bas been obtained from this barrier 
structure by the CDOH. The dimensions and material properties for these numerical analyses are as 
follows: 
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Span of top cable 55 ft 
Sag of top cable 5.5 ft 
Youngs modulus of cable 
Cross section area of top cable 
Cross section area ofbottom cable 
Fence attenuator height 
Fence attenuator width 
Rod attachment length 
Fence attenuator unit weight 
Rock. diameter 
Rock weight . 
Rock impact velocity 
Coefficient of restitution 
Maximum estimated contact overlap 

20,000ksi 
1.076in2 

0.25 in2 (double wrapped) 
8ft 
2.5ft 
2.5ft 
12.2 lbslft3 

2.5 ft 
12001bs 
S3 ftfs'l 
0.4 
0.5 ft 

In the present computer model the cable behavior is modeled with a simple linear elastic model. It should 
be noted that more realistic material models for the cable can be readily iDserted into the present 
algorithm. For example, a constitutive model with time dependent stifiness properties which acrngnts for 
cable life [6], could be easily implemented 

Analysis Results 

A series of analyses were performed to study the influence of the following design wriables: (i) barriers 
systems consisting of one and two fence layers, (ti) single and multiple rocks impacting the barrier 
systems, and (iii) barriers with and without a bottom cable. All analyses assumed that the bottom cable 
segments had a 0.5 it initial slack length. The maximum estimated cootact overlap of 0.5 ft was chosen to 
approximate the local contact deformation of the fence attenators which are constructed from rubber tires 
and rims. 

Each computer run was performed with a time step length of approximately At = 2 x 10-4 seconds. The 
analyses pedormed here required between 5 and IS minutes of CPU, on an Intel 80386, 33 MHz CPU 
microcomputer. 

Geometrical snapshots of the barrier geometry and impacting rocks for four different simulations are 
shown in Figs. 2 and 3. Figs. 2 (a) through (c) illustrate a single rock impactiDg a single layer fence 
barrier system with top and bottom cable attachments. Figs. 2 (d) through (t) illustrate a single rock 
impacting a two layered fence barrier system with top and bottom cable attachments. Figs. 3 (a) through 
(c) illustrate nine rocks (with a total combined weight of 1200 lbs) impacting a two layered fence barrier 
system with top and bottom cable attachments. Figs. 3 (d) through (t) illustrate a single rock impacting a 
two layered fence barrier system with only a top cable attachment. 

Comparison ofF"Ig. 2 (a) through (c) and Fig. 2 (d) through (t) shows the following: (i) similar dynamic 
rock motion during these two impacts, and (li) the dynamic response of the two layered fence barrier is 
significantly less than that of the single fence barrier system. The simulations for the two layered fence 
barrier systems with one and two cable attachments respectively that were subject to a single rock impact 
illustrate the effect of the bottom cable attachment. The bottom cable stiffens the barrier system and 
decreases the rock velocity more than a barrier system without a bottom cable (see Figs. 2 (d) through (e). 
and Figs. 3 (d) through (e». The effect of multiple or single rocks impacting a barrier system is illustrated 
in rIgS. 2 (d) through (t), and Figs. 3 (a) through (e). The overall response of the barrier system is similar 
in these two cases. 

A comparison of the rock velocities for the above simulations are illustrated in Figure 4 .. All of the barrier 
systems with top and bottom cable attachments essentially absorb all the kinetic energy of the impacting 
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rock (or rocks). The barrier system with only a top cable only reduces the rock velocity from S3 ftls. to 32 
fils. Figs. 5 (a) and (b) show the time histories of the dynamic forces generated in the top joint of the 
centtal vertical attenuator rod for the four simulations. Fig. 5 (a) shows the effect of the bottom cable in a 
barrier system on the dynamic loads generated in the top joint. The high peak load at 0.05 seconds in the 
barrier with two cables is because the 0.5 ftof initial slack in the bottom cable has been taken up and 
become tauL Fig. 5 (b) shows that the highest peak force is experienced by the single fence barrier system. 
This :figure also shows that the maximum force generated in the two layered fence barrier impacted by 
nine rocks is similar in magnitude to the single rock impact simulation. Note the effect of the multiple 
rock impacts is seen in the smaller peak loads after 0.08 seconds. 

CONCLUDING REMARKS 

A powerful numerical modeling tool bas been developed for the non-linear dynamic impact modeling of a 
flexIble rockfall prevention barrier system. An approximate three-dimensional impact analysis has been 
peIformed in an effective manner with a new two-dimensional DEM model In this model the barrier 
system and rock kinematics are .assumed to be planar, whereas the cable stiffness c:ft'ects are modeled in a 
tlm:e-dimensional manner. NonliDear cable effects can be modeled and have been discussed elsewhere [11. 

ADEM simuJation procedure for modeling flexible barrier systems with mmti-laJered fence stIuctures 
subject to single and multiple rock impacts has been developed and demonstrated. This munerical model 
has been applied to a series of full scale barrier-rock impact.s. The DUmericaI resuIIs forthis series of 
impact simulations predict the maximum forces genaared witbiD tile feoce c:abk:s and the column 
connections during a rock impact event. CorrespoDdiDg predictions ofpost impact rock velocities have 
also been made. These initial calculations pIeSCDI:ed bere jIJm;bate tbc ease with which a designer can 
evaluate the effects ofvarying differeDt barrier system design parameters on the barrier capacity. It is 
hoped that further use of this numerical model by the CDOH, in conjunction with additional experimental 
data. will enable the design engineer to improve upon the current methodology employed in the design of 
flCXlble rockfall prevention barrier systems. 
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Fig. I A Typical Flexible Rockfall Banier System. (a) Three-dimensional View ofa Twb Layered Fence 
Barrier, (b) Side View of a Two Layered Fence Barrier, (e) DEM Idealization of a Fence Attenuator 
Column. 
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Fig. 2 Geometrical Snapshots of a Barrier-Rock Impact Simulation, Figs. 2 (a). (b) and (e) are for a Single 
Layered Fence Barrier, Figs. 2 (d),(e) and (f) are for a Two Layered Fence Barrier 
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(e) 
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TVO FENCES. 12"''' LBS ROCK 

nil: - ."SEC. 

SINGLE ROCK III'RCT. ONE CABLE 
TVO FENCES. 128" LBS ROCK 

nil: - .1_ SEC. 

Fig. 3 Geometrical SDapShots of a Barrier-Rock Impact Simulation, Figs. 3 (a),{b) and (e) are for a Two 
Layered Fence Barrier subject to a Multiple Rock Impact, Figs. 3 (d),(e) and (f) are for a:I'wo Layered 
Fence Barrier with a Top Cable Attachment only. 
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Fig. 4 Rock Velocity Time Histories for Different Baaier-Rock Impact Simu1atiODS 

Top Joint Force lime Histories 
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Fig. 5 Dynamic Fomes generated in the Top Ioint oftbe Ceuttal Vertical Attenuator Rod. (a) SimulatioDS 
of One and Two Layered Fence Barrier Systems with Bottom Cable Attachments, (b) Simulations of1'wo 
Layered Fence Barrier Systems subject to a Multiple Rock Impact. and with a Top Cable Attachment only. 
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Computer Instructions and Users Manual for FENCE 

Abstract 

This manual is a detailed guide for the FENCE discrete element computer 
software package. It also describes the necessary steps that an engineer 

must undertake to perform a dynamic impact rock-fence analysis using the 
FENCE discrete element computer software package. 

Contents 

IT.I Introduction 
IT.2 Program Overview and File Definitions 
IT.3 Modeling Strategy with FENCE Software 

ll.3.1 Details of the Fence-Rock Geometrical Configuration Definitions 
required by FENCE Input Data 
ll.3.2 Boundary Geometry Definition of the Ground, Attenuators and 
Rocks with Superquadrics 

ll.4 Description of the FENCE Input Data File 
IT.5 Example Analysis Datafiles and Results 

ll.s.1 Sample Input Datafile 
ll.5.3 Sample Geometry Plotting Session 
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ll.llntroduction 

FENCE is a special purpose computer program based on the Discrete Element Method 
(DEM) written for the Colorado Department of Highways (CDOR). The program 
performs rock impact calculations for a specific type of flexible rockfall fence type, The 
fence model used for this analysis of a series of attenuators suspended from a steel cable 
and is based on a prototype developed by CDOH The theoretical foundation of the 
discrete element formulation for this specific application is discussed in previous chapters 
of this report. The fence model description is also included earlier in this report, in 
addition, fence input parameters are discussed below. This Appendix is intended as a 
guideline for the program user and includes: (i) an overview of the computer software 
including the different executable modules, and the associated input, output and graphics 
data files, (ii) the general strategy required to perform an impact analysis using FENCE, 
(iii) a detailed description of the parameters within a FENCE input file, and (iv) an 
example that guides the user through the analysis procedure. 

ll.2 Program Overview and File Dermitions 

The DEM dynamic fence-rock analysis software FENCE consists of three major modules: 
(i) the computational DEM executable module (FENCE) that perfonns the dynamic 
impact calculation, (ii) the interactive graphics geometrical snapshot and animation 
executable module (GPLOT), and (iii) the interactive graphics executable module for time 
history results (HPLOT). 

For the DEM computational module, FENCE, the input data contains the following 
parameters: 

(i) fence and rock geometry and mass properties, 
(ii) material model and properties for the fence cables, 
(iii) impact and restitution parameters between the fence and the rock, 
(iv) the initial rock velocity prior to impact, and 
(v) control parameters which describe the type and time interval sampling interval for 
saving computed results. 

This input data is contained in a data file with a user-specified name appended with the 
extension .DAT. 

The computed results are written to three different output data files with a user-specified 
name appended with the extensions .OUT, .HST, and .GEO, respectively. These output 
data files are called the printout file, the time history file, and the geometry file, 
respectively. 
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The printout file is used directly to verifY the input data and for checking purposes by the 
user. The time history and the geometry results data files are input data for the graphical 
post-processing modules HPLOT and GPLOT, respectively. 

The HPLOT graphics module interactively displays time history plots and produces 
postscript graphics output. Typical time history data plots include; (i) centroidal 
kinematics quantities such as position and velocity components for the rock and the 
attenuator columns, and (ii) forces in the overhead and bottom cable segments, and the 
attenuator hanger connections. 

The GPLOT graphics module is used to display the following geometrical data for the 
fence-rock system; (i) single snapshots of the fence-rock geometry at prescribed times 
during the impact, or (ii) animation of the fence-rock motion throughout the impact. 
Postscript graphics output of the single geometry snapshots can also be produced by 
GPLOT. 

In the example illustrated in Figure 11.1 the user-specified name for the input data file is 
fuameI , and the user-specified name for the output data files is fuame2. 

fname2.OUT 
(printed output) 

tname2.HST 
(lime history output) 

fname2.GEO 
(geometrical output) 

(interactive graphics and hardcopy) 

IQI j;j ~ = 1:1 

(Interactive graphics and hardcopy) 

(a) Dynamic Impact caJculation (b) time history graphics postprocessing (c) geomeby snapshot postprocessing 

Figure II. I Execution Sequence ofFENCE Computer Software: 

The data file definitions for the above figure are as follows: 

(i) fuamel.DAT: Input File, where mamel is a user defined name, 
(ii) fuame2. OUT: Output File in ASCII format, where fhame2 is a user defined name, 
(iii) fhame2.HST: Time History Plot File in binary format, 
(iv) fuame2.GEO: Geometry Plot File in binary format, 
(v) hplotfile: 'Postscript' File for printer plot of time history results, 
and (vi) gplotfile: 'Postscript' File for printer plot of geometry snapshot results. 

IL3 Modeling Strategy with FENCE Software 
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When penonning a rock-fence impact analysis the following strategy is recommended: 

(i) Gather the relevant design data about the fence structure and the impact conditions. 
This data includes: (a) the geometrical configuration of the fence and attenuator masses, 
and (b) the shape and mass of the impacting rock and its initial impact position relative to 
the fence and the impact velocity. 

(ii) Make a simple sketch of the side view (x.,y plane) of the impact geometry. 
This will be used to define the input geometry data. 

(iii) Decide what results are required from the analysis. This includes the following: (a) 
how much printed output is needed ( This can be voluminous, so be careful. ), (b) which 
elements (fence, rock and attenuators) must be flagged for results output purposes, (c) 
what time history information is needed, and (d) what geometrical snapshot information is 
needed. 

(iii) Generate an input data file with a user defined name with an extension .DAT. 

(iv) Perform an initial test run to verify the input data. This can accomplished by running 
the analysis for one time step only. Check the input data by reviewing the .OUT file for the 
following likely errors: (a) incorrect geometry of the fence, or initial position of the 
impacting rock, (b) check fence and rock masses and initial rock velocity, (c) check the 
total span and initial sag of the top overhead cable, (d) check the horizontal spacing 
between attenuator columns, (e) check maximum specified overlaps between rocks and 
attenuators elements and restitution coefficient. Verify the problem geometry by viewing 
the initial configuration with the GPLOT graphics module. 

(v) Re-run problem for approximately 200 time steps to check the initial impact 
kinematics, such as the initial speed and direction of the impacting rock. Check the initial 
impact parameters graphically with GPLOT. If there is a problem with the impact 
parameters change the initial impact parameters in the .DAT input file. If the data verifies 
determine the number of time steps required for a complete simulation, change the .DAT 
input file, and make the final run for the complete impact simulation. 

NOTE: There are number of example data files provided with the DEM computer 
software. Therefore, many of the above steps can be performed quickly by copying an 
existing data file and modifying it accordingly for a particular rock-fence impact analysis. 

II.3.1 Details of the Fence-Rock Geometrical Configuration Definitions required by 
FENCE Input Data 

In a typical fence-rock impact analysis only the geometry of three bodies is required. 
These bodies ( or elements) are usually: (i) the ground or base element, (li) the rock 
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element, and (iii) the central attenuator element. Figure II.2. shows the general situation 
for a single rock impacting a fence. For the problem defined in Figure II.2 it should be 
noted that the geometry for elements 1 through 3 has to be defined. The geometry of 
elements 4 through 7 is generated automatically. Note that elements 4 through 6 are slave 
attenuator elements, and element 7 is a dummy fixed attenuator element. 

-r-- semi span (SJ2) 1 
.jL d --,/' 

Central Attenautor 

y Rock Element 

L x Slave (Foced) 

Ground Element 
Slalle attenualOls 

(a) X-V Plane VIeW (b) Front View 

Figure II.2 Typical Geometrical Configuration for a Rock - Single Layer Fence Impact 
Analysis 

The following points should be noted in defining the geometry for a problem: 

(i) the elements representing the ground, the rock and the central attenuator should be 
defined in this order. For example, the ground is element 1, the rock is element 2 and the 
central attenuator is element number 3. Note that if multiple rocks are defined they must 
be defined sequentially. In a three rock impact analysis, the ground is element 1, the rocks 
are elements 2 through 4, and the central attenuator is element number 5. 

(ii) the total number of attenuators, not accounting for symmetry must be defined in the 
input data. For the problem defined in Figure 2, the total number of attenuators is 7. This 
number is computed from the central attenuator and three slave attenuators on both sides. 
Note an additional attenuator element is used for fixity purposes in the FENCE model. In 
this example it is element 7. This element, however, is not defined by the user. 

(iii) the total span, S, the sag height h, and the spacing between the centers of adjacent 
attenuators d, must be defined 

11.6 

(h) 



(iv) the ith cable segment is defined as the segment on the immediate right of attenuator 
element i. 

(v) an example of the element numbering for a two layered fence barrier is shown in 
Figure ll.3. 

(2nd Row) (1st Row) 

® Rock EIemert 

(al Front VifNI (2nd Row) (b) X-Y Plane View (e) Front View (1st Row) 

Figure ll.3 Typical Geometrical Configuration for a Rock - Double Layer Fence Impact 
Analysis 

ll.3.2 Boundary Geometry Definition of the Ground, Attenuators and Rocks with 
Superquadrics 

In the two-dimensional discrete element FENCE model the rigid bodies that represent the 
attenuators, the ground surface and the rock( s) are idealized with a superquadric 
geometrical description. For further details of super quadric functions, see Barr (1981). 

F or the ith body the following parameters are defined: mi is the mass, Ii is the mass polar 

moment of inertia with respect to the centroid, Xi and Y; are the global centroidal 

coordinates, and 9i is an angular coordinate defining the direction of the local x-direction 
defined by the principal axis of the body with respect to the global X-direction (see Figure 
ITA). The parameters that define the shape of the body are 81, bi. and ni and are defined as 
the semi-lengths of superquadric in the local centroidal x- and y- directions, and the real 
exponent which specifies the roundness of the superquadric respectively. 
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Figure ll.4 Definition of Local and Global Superquadric Geometry 

ll.4 Description of the FENCE Input Data File 

This section describes the input parameters and the required format for the input file with 
an extension .DAT. The READ statements described below are contained in the input 
source file INPUT .FOR 

READC* .'CAY) flinp 

Oinp = screen prompt for input data file (e.g. fuamel) 

READC*,'CA)') flout 

flout = screen prompt for output files (e.g.fuame2) 

READ(iin.'Ca)') ptide 

ptide = title line for input data (1st line in fuame1.DAT) 

READ[rln. *) fact dt,niter.nprint.nhisto.f penet 

fact_dt 
niter 
nprint 

= factor of critical time step length 
= number of time steps (iterations) 
= number of time step intervals between writing results onto .OUT and 
.GEO files 

nhisto = number of time step intervals between writing results to .HST file 
f Jenet = minimum penetration between rock and attenuator during impact defined 
as fraction of the bounding dimensions of bodies. 
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NOTE: This can be overidden by using an explicit definition of maximum penetration 
between attenuator and rock elements and attenuator and attenuator elements. See 
READ(iin, *) rC overlap, .... 

READ(jin. *) nel,igrav,grav 

nel = number of elements (e.g., for slope, attenuators and rock (or rocks» 
NOTE: usually nel = 3 
igrav = 1 ... gravity acts in positive y-direction 
igrav =-1 ... gravity acts in negative y-direction 
grav = gravitational constant 

READ(iin. *) elstore 

elstore = number of elements tagged for recording time history results 

READ(jin. *) (elnos(i),i=l,elstorel 

elnos = array of element I.D's tagged for recording time history results 

READ(jin. *) totvar 

totvar = no. of variables to be stored (max. =6) 

READ(iin. *) (variab(i),i=l,hvmaxl 

variab = list of time history variable codes to be recorded for elements in e1nosO 

NOTE: these integer codes are defined in global.par source file and printed in the .OUT 
file. 

*** beginning of element loop, i = I,nel 

type 
shape 

READ(jin. *) type,shape,points 

= ( rock=O, attenuator=1 ) 
= (sphere or ) 
( ellipsoid (rock) = 0) 
(rectang. block (rock) = I) 
(cylinder (attenuator) = 2) 

points = number of nodal points on superquadric 

1I".9 



READ(iin. *) xlen,ylen,power,rho,barlen 

xlen = length in x-dir. (a.;.) 
ylen = length in y-dir. (hj) 
power = power of superquad (nj) 
rho = mass density 
barlen = attachment length (attenuator only) 

Note: See Figure IT.4 for superquadric geometry definitions 

READ(iin. *) xcent,ycent,theta,yx,yy,omega,fx,fy,mz 

initial global geometrical and dynamic centroidal conditions for an element: 

xcent = x-coordinate 
ycent = y-coordinate 
theta = rotation 
vx = x-velocity 
vy = y-velocity 
omega = angular velocity 
fx = force in x-direction 
fy = force in x-direction 
mz = moment 

READ(iin. *) bcll),bcl2l,bcC3),xI f!LV1 fIX 

bc(i) = centroidal fixities 
bc(i) = 1 .. fixed 
bc(i) = 0 .. :free 
bc(l) = x-direction 
bc(2) = y-direction 
bc(3) = rotational 

*** end of element loop 

READ(iin. *)span.sag,dcol,young,y top,y bot,nocab, 
ncoLecoetT,area top,area bot,frict,slack.brek top, 
brek bot 

Definition of fence layer parameters: 
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span 
sag 
dcol 
young 
y_top 
y_bot 
nocab 
ncol 
ecoetT 
area_top 
area_bot 
frict 
slack 
brek_top 
brek bot 

= Horizontal cable span 
= Vertical cable sag 
= Horizontal distance between columns 
= Youngs modulus of cable 
= y-coordinate of top cable connection 
= y-coordinate of bottom cable connection 
= No. of toplbottom connections on attenuator 
= No. of tire attenuator columns in a fence layer 
= coefficient of restitution 
= x-section area of top cable 
= x-section area of bottom cable 
= coefficient of friction 
= slack in between bottom connections 
= top cable breaking strength 
= bottom cable breaking strength 

READ(iin. *) no fence. sp fence 

Multiple fence layer parameters: 

= number of fence layers no fence 
sp_fence = center to center spacing between the two fence layer 

READ(iin. *) rf overlap. ff overlap 

Definition of maximum penetration between attenuator and rock elements and attenuator 
and attenuator elements in different fence layers: 

rf _overlap = approximate maximum penetration between attenuator and rock 
ff_ overlap = approximate maximum penetration between attenuator and attenuator in 
different layers 

*** End of Input Data file *** 

ll.S Example Analysis Dataf'des and Results 

ll.S.l Sample Input Datafde 
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The following data set is for a double layer fence structure being impacted by a single 
rock. This data set is called sample2.DAT on the diskette supplied with FENCE. 

Data Optional Comments 

DOUBLE LAYER FENCE ROCK WEIGHT = 1200 LBS 
0.0300060300.05 fact_dt,niter,nprint,nhisto,fact-penet 
3 -1 32.18 ne~ igrav, grav 
5 elstore 
2,3,4,5,6 (elnos(i),i=l,elstore) 
8 totvar 

51 524867835360 (variab(i),i=l,hvrnax) 
0.0 1.0 2.0 type,shape,points - SLOPE ELEMENT 
10.0 0.5 0.0 0.1 0.5 xlen,ylen,power,rho,barlen 
0.0 -5.0 0.0 0.0 0.0 0.0 o. o. o. xc,yc,th,vx,vy,oma,fX,fY,mz 
1.0 1.0 1.0 O. o. bc(l),bc(2),bc(3),xfix,yfix 
0.0 0.0 4.0 type,shape,points - ROCK 
1.201 1.201 0.0 5.13 0.0 xlen,ylen,power,rho,barlen 
2.451 0.00.0 -65.0.034. O. O. O. xc,yc,th,vx,vy,oma,fX,fY,mz 
0.0 0.00.0 O. O. bc(l),bc(2),bc(3),xfix,yfix 
1.0 2.0 2.0 type,shape,points - FENCE attenuator 
1.25 4.0 0.00.762.67 xlen,ylen,power,rho,barlen 
0.00.00.00.00.00.0 O. O. O. xc,yc,th,vx,vy,oma,iX,fY,mz 
0.0 0.0 0.0 O. O. bc(1),bc(2),bc(3),xfix,yfix 
55.05.5 2.5 2.0e7 6.67 -4.0 2 13 0.4 1.0760.25 0.00.5 le8 le8 
2,2.6 - no. fences, spacing between fences 
0.6,0.5 - max. rock and fence overlaps 
span.sag,dco~e,y_t,y_b,nocab,ncol,ecoeff:a_t,a_b,frict,slack,brek_top,brek_bot 

***** End of DATA ***** 

11.5.2 Sample Output Datarde 

The following is selected printed output from sample2. OUT that was produced from 
executing FENCE with the data set sample2.DAT. This output data set is on the diskette 
supplied with FENCE. 

DOUBLE LAYER FENCE 

factor of critical time step 
total no. of time steps 
time steps per printout 
history time steps 

ROCK WEIGHT = 1200 LBS 

= .OOOEi-OO 
= 3000 
= 60 

= 30 
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no. of discrete elements = 3 
igrav (=1 for positive y-dir.) = -1 
gravity = .3218E+02 

no. of elements for time history records = 5 

element history army: 

2 3 456 

no. of variables to be stored (max:. 8) 8 

list of variables to be stored: 
(see pointers defined in global.par) 

51 52 48 6 7 8 35 36 

Properties for element no.: 1 
Type (rock=O, fence=l) = 0 
Shape 1 
(sphere or ) 
( ellipsoid (rock) = 0) 
(rectang. block (rock) = 1) 
( cylinder (fence) = 2) 

Number of points on superquad = 2 
Length in x-dir. Qarge radius)= .100E+02 
Length in y-dir. (short radius)= .500E+OO 
Power of superquad = .OOOE+OO 
Mass density = .100E+OO 
Attachment length (fence only) = .500E+OO 

Properties for element no.: 2 
Type (rock=O, fence=1 ) = 0 
Shape = 0 

(sphere or ) 
( ellipsoid (rock) = 0) 
(rectang. block (rock) = 1) 
(cylinder (fence) = 2) 

Number of points on superquad = 4 
Length in x-dir. (large radius)= . 120E+O 1 
Length in y-dir. (short radius)= .120E+Ol 
Power of superquad = .OOOE+OO 
Mass density = .513E+Ol 
Attachment length (fence only) = .OOOE+OO 

Properties for element no.: 3 
Type (rock=O, fence=l) = 1 
Shape = 2 

(sphere or ) 
( ellipsoid (rock) = 0) 
(rectang. block (rock) = 1) 
( cylinder (fence) = 2) 

Number of points on superquad = 2 
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Length in x-dir. (large radius)= .125E+Ol 
Length in y-dir. (short radius)= .400E+Ol 
Power of snperquad = .OOOE+OO 
Mass density = . 760E+OO 
Attachment length (fence only) = .267E+Ol 

Element initial conditions 
el. x-lac y-Ioc theta vx vy ang-v fx 

fy mz 
1 .OOOE+OO -.SOOE+Ol .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO 
2 .245E+Ol .OOOE+OO .OOOE+OO -.6S0E+02 .OOOE+OO .340E+02 .OOOE+OO .OOOE+OO .OOOE+OO 
3 .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO '()()OE+OO .OOOE+OO .OOOE+OO 

Element :fixities 
el. fix-x fix-y fix-r x_local yJ.ocal 

1 1 1 1 .OOOE+OO .OOOE+OO 
2 0 0 0 .OOOE+OO .OOOE+OO 
3 0 0 0 .OOOE+OO .OOOE+OO 

Description of Parameter Names in Element Data Structure 
l.D number Description 

1 SMALLEST POINTER 
2 ELEMENT SHAPE(E.G. SPHERICAL) 
3 X - LOCATION OF ELEMENT CENTROID 
4 Y - LOCATION OF ELEMENT CENTROID 
5 ELEMENT GLOBAL ROTATION - THETA 
6 X - VELOCITY OF ELEMENT CENTROID 
7 Y - VELOCITY OF ELEMENT CENTROID 
8 ANGULAR VELOCITY OF ELEMENT - OMEGA 
9 ELEMENT LENGTH X-DIR. 
10 ELEMENTLENGTHY-DIR. 
11 POWER OF SUPERQUAD 
12 NUMBER OF NODAL POINTS ON SUPERQUAD 
13 A'ITACIDAENT LENGTH (.FENCE ONLy) = 0.0 FOR 
14 ELEMENT DENSITY 
15 ELEMENT MASS 
16 ELEMENT MASS MOMENT OF INERTIA 
17 EXTERNAL CENTROIDAL FORCE X-DIR. 
18 EXTERNAL CENTROIDAL FORCE Y -DIR. 
19 EXTERNAL CENTROIDAL MOMENT 
20 CENTROIDAL BOUNDARY CONSTRAINT, X-DIR. 
21 CENTROIDAL BOUNDARY CONSTRAINT, Y-DIR. 
22 CENTROIDAL BOUNDARY CONSTRAINT, ROTATION 
23 TOTAL APPLlED ELEMENT LOAD, X-DIR. 
24 TOTAL APPLIED ELEMENT LOAD, Y-DIR. 
25 TOTAL APPLIED ELEMENT LOAD, ROTATION 
26 OLD ELEMENT VELOCITY AT CENTROID X-DIR. 
27 OLD ELEMENT VELOCITY AT CENTROID Y-DIR. 
28 OLD ELEMENT VELOCITY AT CENTROID ROT. 
29 NORMAL CONTACI' STIFFNESS 
30 SHEAR CONTACI' STIFFNESS 
31 MASS DAMPING FOR TRANSLATION 
32 MASS DAMPING FOR ROTATION 
33 LOCAL X-COORDINATE OF A FIXED PT. ON ELE 
34 LOCAL Y -COORDINATE OF A FIXED PT. ON ELE 
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35 ELEMENT KINETIC ENERGY (TRANSLATIONAL) 
36 ELEMENT KINETIC ENERGY (ROTATIONAL) 
37 ELEMENT KINETIC ENERGY (TOTAL) 
38 ELEMENT GRAVITATIONAL ENERGY 
39 NODAL SPRING ENERGY (AXIAL) 
40 NODAL SPRING ENERGY (SHEAR) 
41 NODAL SPRING ENERGY (BENDING) 
42 INCREMENTAL SPRING DISPLACEMENT (AXlA.L) 
43 INCREMENTAL SPRING DISPLACEMENT (SHEAR) 
44 INCREMENTAL SPRING ROTATION 
45 ELEMENT POTENTIAL ENERGY (GRA VIT. & SPRI 
46 TOP CABLE LENGTII 
47 BOTTOM CABLE LENGTH 
48 TENSION IN TOP CABLE 
49 X-COMPONENT OF TENSION IN TOP CABLE 
50 Y -COMPONENT OF TENSION IN TOP CABLE 
51 FORCE IN TOP JOINT OF ATTENUATOR 
52 TENSION IN BOTTOM CABLE 
53 X-COMPONENT OF TENSION IN BOTTOM CABLE 
54 Y-COMPONENT OF TENSION IN BOTTOM CABLE 
55 STIFFNESS OF TOP CABLE 
56 STIFFNESS OF BOTTOM CABLE 
57 INITIAL LENGTII OF BOTTOM CABLE 
58 BREAKING STRENGTII OF TOP CABLE 
59 BREAKING STRENGTH OF BOTTOM CABLE 
60 TOP CABLE PLASTIC DEFORMATION (Ff) 
61 LARGEST POINTER (CHECK WITII NPRMAX !) 

Fence Support Data Parameters 
Horizontal cable span = 55.0 
Vertical cable sag = 5.50 
Horizontal distance between columns = 2.50 
Youngs modulus of cable = .200E+08 
y-coordinate of top cable connection = 6.67 
y-coordinate of bottom cable connection = -4.00 
No. of top/bottom connections on fence = 2 
No. of tire columns in fence layer = 13 
coefficient of restitution = .400 
x-section area of top cable = 1.08 
x-section area of bottom cable = .250 
coefficient offriction = .000 
slack in between bottom connections =.500 
top cable breaking strength = .100E+09 
bottom cable breaking strength = .100E+09 

No. of fence layers = 2 
gap between fence layers = 2.60 

Maximum overlap (rocklfence) 
Maximum overlap (fence/fence) 

= .6000E+OO 
= .5000E+OO 

Element IDs of attenuators in fence layer: 1 
IDnos. = 3456789 
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Element LDs of attenuators in fence layer: 2 
LD nos. = 111213 14151617 

element mass m.o.i. 
1 .4000E+02 .1337E+04 
2 .3723E+02 .2148E+02 
3 .2985E+02 .1708E+03 
4 .2985E+02 .1708E+03 
5 .2985E+02 .1708E+03 
6 .2985E+02 .1708E+03 
7 .2985E+02 .1708E+03 
8 .2985E+02 .1708E+03 
9 .2985E+02 .1708E+03 
10 .2985E+02 .1708E+03 
11 .2985E+02 .1708E+03 
12 .2985E+02 .1708E+03 
13 .2985E+02 .1708E+03 
14 .2985E+02 .1708E+03 
15 .2985E+02 .1708E+03 
16 .2985E+02 .1708E+03 
17 .2985E+02 .1708E+03 
18 .2985E+02 .1708E+03 

Normal contact stiffness (rockIfence) = .1944E+06 
Maximum fence penetration = .5000E+OO 

Normal contact stiffness (fencelfence) = .2522E+06 
Maximum fence penetration = .5000E+OO 

Normal contact stiffness (ground/rock) = .8723E+08 
Infonnation: SIR chekdt - time step = .827E-04 
note, max. stable time step = .827E-D4 

max time step governed by axial 
of element no. = 3 

time = .496E-02 sees 

stiffnesses 

el. x y theta vx vy ang-v 

1 .OOOE+OO -.500E+OI .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO 
2 .216E+Ol-.402E-D3 .165E+oO -.490E+02 -.158E+OO .306E+02 
3 -.428E-Ol .166E-05 .59lE-03 -.200E+02 .179E-02 .378E+oO 
4 -.228E-04 .545E-Ol .266E-04 -.204E-Ol -.215E-02 .237E-Ol 
5 -.429E-07 .218E+OO .500E-07 -.517E-04 -.148E-05 .603E-04 
6 -.474E-IO .490E+OO .552E-I0 -.725E-07 -.149E-08 .845E-07 
7 -.336E-13 .87lE+OO .392E-13 -.627E-1O -.20lE-11 .730E-IO 
8 -.165E-16 .136E+Ol .192E-16 -.361E-13 .148E-12 .42lE-13 
9 -.585E-20 .196E+Ol .682E-20 -.147E-16 -.280E-12 .l72E-16 
10 .OOOE+oO .550E+Ol .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO 
11 -.260E+Ol .384E-17 .OOOE+OO .OOOE+OO .152E-14 .OOOE+OO 
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12 -.260E+Ol .545E~1 .OOOE+OO .OOOE+OO .182E-IS .OOOE+OO 
13 -.260E+Ol .218E+OO .OOOE+OO .OOOE+OO -.109E-14 .OOOE+OO 
14 -.260E+Ol .490E+OO .OOOE+OO .OOOE+OO .200E-15 .OOOE+OO 
15 -.260E+Ol .871E+OO .OOOE+OO .OOOE+OO -.lOlE-14 .OOOE+OO 
16 -.260E+Ol .136E+Ol .OOOE+OO .OOOE+OO .148E-12 .OOOE+OO 
17 -.260E+Ol .196E+Ol .OOOE+OO .OOOE+OO -.280E-12 .OOOE+OO 
18 -.260E+Ol .550E+Ol .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO 

time = .993E~2 sees 

el. x y theta vx vy ang-v 

1 .OOOE+OO -.500E+Ol .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO 
2 .196E+Ol -.154E-02 .310E+OO -.332E+02 -.295E+OO .285E+02 
3 -.194E+OO .262E~3 .160E~2 -.377E+02 .224E+OO -.945E+OO 
4 -.791E~3 .543E~1 .92~3 -.454E+OO -.988E~1 .529E+OO 
5 -.430E~5 .218E+OO .501E~5 -.303E~2 -.46IE~3 .354E-02 
6 -.156E~7 .490E+OO .182E~7 -.134E-04 -.167E~5 .156E-04 
7 -.393E-I0 .871E+OO .458E-IO -.400E~7 -.799E-08 .466E-07 
8 -.71IE-13 .136E+Ol .829E-13 -.843E-1O -.449E-IO .982E-1O 
9 -.962E-16 .196E+Ol .112E-15 -.130E-12 -.778E-12 .152E-12 
10 .OOOE+OO .550E+Ol .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO 
11 -.260E+Ol -.123E~4 .139E~3 -.110E+Ol -.557E~1 .537E+OO 
12 -.260E+Ol .545E~1 .562E~8 -.353E-04 -.858E-06 .411E-04 
13 -.260E+Ol .218E+OO .679E-13 -.S47E~9 -.140E-I0 .638E~9 
14 -.260E+Ol .490E+OO .332E-18 -.312E-14 .379E-IS .363E-14 
15 -.260E+Ol .871E+OO .OOOE+OO .OOOE+OO -.202E-14 .OOOE+OO 
16 -.260E+Ol .136E+Ol .OOOE+OO .OOOE+OO .296E-12 .OOOE+OO 
17 -.260E+Ol .196E+Ol .OOOE+OO .OOOE+OO -.561E-12 .OOOE+OO 
18 -.260E+Ol .550E+Ol .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO 

time = .149E~1 sees 

el. x y theta vx vy ang-v 

1 .OOOE+OO -.500E+Ol .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO 
2 .183E+Ol-.342E~2 .444E+OO -.211E+02 -.477E+OO .252E+02 
3 -.357E+OO .769E~3 -.800E~2 -.307E+02 -.770E+OO -.344E+Ol 
4 -.725E~2 .530E~1 .845E~2 -.225E+Ol -.405E+OO .262E+Ol 
5 -.940E-04 .218E+OO .110E~3 -.494E-Ol -.248E-Ol .576E-Ol 
6 -.638E-06 .490E+OO .744E~6 -.399E-03 -.153E~3 .465E-03 
7 -.314E~S .871E+OO .366E~S -.229E-05 -.133E-05 .267E-05 
8 -.1l6E-I0 .136E+Ol .135E-I0 -.971E-OS -.149E-07 .113E-07 
9 -.33IE-13 .196E+Ol .3S5E-13 -.313E-I0 -.198E-09 .365E-I0 

10 .OOOE+OO .550E+Ol .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO 
11 -.266E+Ol .193E-02 -.599E-03 -.194E+02 .163E+Ol-.242E+OO 
12 -.260E+Ol .545E-Ol .630E-04 -.363E-Ol-.414E-02 .423E-Ol 
13 -.260E+Ol .21SE+OO .IS4E-06 -.157E-03 -.769E-05 .IS3E-03 
14 -.260E+Ol .490E+OO .2S1E-09 -.321E-06 -.163E-07 .374E-06 
15 -.260E+Ol .S71E+OO .260E-12 -.370E-09 -.397E-I0 .431E~9 
16 -.260E+Ol .136E+Ol .160E-15 -.272E-12 .357E-12 .317E-12 
17 -.260E+Ol .196E+Ol .40SE-19 -.109E-15 -.841E-12 .126E-15 
18 -.260E+Ol .550E+Ol .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO 
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II.5.3 Sample Geometry Plotting Session 

The following output is from the computer screen during a sample session using GPLOT. 
the interactive geometry plotting module. This session produces an animation of the 
sample2 analysis: 

NOTES: 
(i) The command g executes a batch file g.bat which executes gplot from a subdirectory. 
(ii) The user responses are prefixed with >. 

>g 
Enter input~ file name (Exclude Ext) : sample2 
Enter Plotting Time: 

>11 
do you want to plot element numbers (yIn)? 

>n 
current window coordinates are: 
x-min y-min x-max y-max 
-10.0 -15.0 10.0 9.69 
do you want to change the window coords (yIn)? 
>n 
animate or single frame (a/s) ? 
>a 

Stop - Program terminated. 

The hardcopy output from grock.ps is shown in Figure n.s below. 

ROCK WEIGHT - 12mm LBS 

Figure n.s A Geometry Snapshot Plot 
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ll.S.4 Sample Time History Plotting Session 

The following output is from the computer screen during a sample session using HPLOT 
the interactive time history plotting module. This session produces a time history of the x­
component of the rock velocity throughout the impact for the sample2 anaIysis. A 
hardcopy file called vrock. ps is created during the session. The hardcopy output from 
vrock.ps is shown in Figure ll.6: 

NOTE: The command h executes a batch file h.bat which executes hplot from a 
subdirectory. 

ROCK WEIGHT 1200 LBS 
10 1 

.75 

- .70 / 
f-a - ... ... --.;; 

V KEY 

-2 .15 

-3.60 

.~ 

1 
-5.05 

-6.50 
. 00 .05 .10 .15 .20 .25 

TIME IN (SECS.) 

Figure ll.6 Time History of x-component of Rock Velocity 
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C:\GRAHAM\FENCE>h 

C:\GRAHAM\FENCE >hplot\hist 
ENTER HISTORY PLOT FILENAME (20 CHARACTERS MAX.) 

sample2 
Select from Available Elements Numbers: 

2 3 4 5 6 
Enter Element Number: 
2 
Element Number 2 is Selected 

Do you want to select another element? 
Enter y(es) or nCo) 
n 
Select 
Case: 
Case: 
Case: 
Case: 
Case: 
Case: 
Case: 
Case: 

y-values from available components: 
1 FORCE IN TOP JOINT OF ATTENUATOR 
2 TENSION IN BOTTOM CABLE 
3 TENSION IN TOP CABLE 
4 X - VELOCITY OF ELEMENT CENTROID 
5 Y - VELOCITY OF ELEMENT CENTROID 
6 ANGULAR VELOCITY OF ELEMENT - OMEGA 
7 ELEMENT KINETIC ENERGY (TRANSLATIONAL) 
8 ELEMENT KINETIC ENERGY (ROTATIONAL> 

Enter 
4 

Case Number: 

Case: 7 ELEMENT KINETIC ENERGY (TRANSLATIONAL) 
Case: , 8 ELEMENT KINETIC ENERGY (ROTATIONAL> 

Enter 'Case Number: 
4 

X - VELOCITY OF ELEMENT CENTROID is Selected 
Do you want to plot element x-values 
n 
Enter Plotting Time: 

11 
do you want to change plotting titles? 

ROCK WEIGHT = 1200 LBS 

n 
do you want to change plotting x-title? 
TIME IN (SECS.) 
n 
do you want to change plotting y-title ? 

X - VELOCITY OF ELEMENT CENTROID 
n 
do you want to change ymin. ymax ? 
ymin = -.6500E+02 ymax = • 7456E+01 
n 
do you want to change no. of x and y grid divisions? 
ndivx = 5 ndivy = 5 
n 
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Do you want a hardcopy output file (yIn)? 
y 
enter filename - max 20 characters 

vrock.ps 
Hardcopy file is vrock.ps 

do you want to dump history data to a file (yIn) ? 
y 
enter data file name, 40 characters max. 

vrock 
data file name is: 

vrock.RAW 
enter return to continue 

Do you, want to do another plot,new plot file or quit? 
Enter:~(nother)/n(ew)/q(uit) 

Stop - Program terminated. 
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